Skip to main content

An Evidential Fusion Architecture for People Surveillance in Wide Open Areas

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6678))

Included in the following conference series:

  • 1849 Accesses

Abstract

A new evidential fusion architecture is proposed to build an hybrid artificial intelligent system for people surveillance in wide open areas. Authorized people and intruders are identified and localized thanks to the joint employment of cameras and RFID tags. Complex Event Processing and Transferable Belief Model are exploited for handling noisy data and uncertainty propagation. Experimental results on complex synthetic scenarios demonstrate the accuracy of the proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sanpechuda, T., Kovavisaruch, L.: A review of RFID localization: Applications and techniques. In: ECTI-CON, pp. 769–772 (2008)

    Google Scholar 

  2. Xin, H., Janaswamy, R., Ganz, A.: Scout: Outdoor localization using active RFID technology. In: BROADNETS, pp. 1–10 (2006)

    Google Scholar 

  3. Smets, P.: The transferable belief model. Artif. Intell. 66, 191–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guironnet, M., Pellerin, D., Rombaut, M.: A fusion architecture based on tbm for camera motion classification. Image Vision Comput. 25, 1737–1747 (2007)

    Article  Google Scholar 

  5. Clerentin, A., Delahoche, L., Marhic, B., Delafosse, M., Allart, B.: An evidential fusion architecture for advanced driver assistance. In: IEEE/RSJ IROS, pp. 327–332 (2009)

    Google Scholar 

  6. Medsker, L.: Hybrid Intelligent Systems. Kluwer Academic Pub., Dordrecht (1995)

    Book  MATH  Google Scholar 

  7. Corchado, E., Abraham, A., de Carvalho, A.: Editorial: Hybrid intelligent algorithms and applications. Inf. Sci. 180, 2633–2634 (2010)

    Article  Google Scholar 

  8. Herrero, Á., Corchado, E., Pellicer, M.A., Abraham, A.: Movih-ids: A mobile-visualization hybrid intrusion detection system. Neurocomp. 72, 2775–2784 (2009)

    Article  Google Scholar 

  9. Tapia, D.I., Fraile, J.A., de Luis, A., Bajo, J.: Healthcare information fusion using context-aware agents. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS, vol. 6076, pp. 96–103. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Villar, J.R., de la Cal, E., Sedano, J.: Hybrid Artificial Intelligence Systems: Minimizing energy consumption in heating systems under uncertainty. In: Corchado, E., Abraham, A., Pedrycz, W. (eds.) HAIS 2008. LNCS (LNAI), vol. 5271, pp. 583–590. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Cucchiara, R., Fornaciari, M., Prati, A., Santinelli, P.: Mutual calibration of camera motes and rfids for people localization and identification. In: ACM/IEEE ICDSC, pp. 1–8 (2010)

    Google Scholar 

  12. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley Longman, Amsterdam (2002)

    Google Scholar 

  13. Paschke, A.: A homogenous reaction rule language for complex event processing. In: EDA-PS (2007)

    Google Scholar 

  14. Dubois, D., Prade, H., Smets, P.: New semantics for quantitative possibility theory. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 410–421. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Jousselme, A.L., Grenier, D.: loi Boss: A new distance between two bodies of evidence. Information Fusion 2, 91–101 (2001)

    Article  Google Scholar 

  16. Smets, P.: Analyzing the combination of conflicting belief functions. Inf. Fusion 8, 387–412 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fornaciari, M., Sottara, D., Prati, A., Mello, P., Cucchiara, R. (2011). An Evidential Fusion Architecture for People Surveillance in Wide Open Areas. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds) Hybrid Artificial Intelligent Systems. HAIS 2011. Lecture Notes in Computer Science(), vol 6678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21219-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21219-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21218-5

  • Online ISBN: 978-3-642-21219-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics