Abstract
In this paper, we consider the use of artificial intelligence techniques to aid in discovery of winning strategies for the Commons Game (CG).
The game represents a common scenario in which multiple parties share the use of a self-replenishing resource. The resource deteriorates quickly if used indiscriminately. If used responsibly, however, the resource thrives. We consider the scenario one player uses hill climbing or particle swarm optimization to select the course of action, while the remaining Nāāā1 players use a fixed probability vector. We show that hill climbing and particle swarm optimization consistently generate winning strategies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdelbar, A.M., Ragab, S., Mitri, S.: Applying co-evolutionary particle swam optimization to the egyptian board game seega. In: ASPGP 2003. pp. 9ā15 (2003)
Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines. Neurocomputing 72(13-15), 2729ā2730 (2009)
Abraham, A., Kƶppen, M., Franke, K. (eds.): Design and application of hybrid intelligent systems. Amsterdam, IOS Press (2003)
Axelrod, R., Hamilton, W.: The evolution of cooperation. Science 211(4489), 1390 (1981)
Baba, N.: The commons game by microcomputer. Simulation & Gaming 15, 487ā492 (1984)
Baba, N.: Utilization of genetic algorithms in order to make game playing much more exciting. In: KES 1999, pp. 473ā476 (1999)
Baba, N., Nagasawa, K., Handa, H.: Utilization of Soft Computing Techniques for Making Environmental Games More Exciting āToward an Effective Utilization of the COMMONS GAME. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part II. LNCS (LNAI), vol. 5178, pp. 411ā417. Springer, Heidelberg (2008)
Brunovsḱý, P.: The commons game. Ekonomicky Casopis 55(8), 811ā814 (2007)
Conradie, J., Engelbrecht, A.P.: Training bao game-playing agents using coevolutionary particle swarm optimization. In: CIG 2006, pp. 67ā74 (2006)
Faysse, N.: Coping with the tragedy of the commons: Game structure and design of rules. Journal of Economic Surveys 19(2), 239ā261 (2005)
Handa, H., Baba, N.: Evolutionary computations for designing game rules of the commons game. In: CIG 2007, pp. 334ā339 (2007)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: ICNN 1995, vol. 4, pp. 1942ā1948 (1995)
Kirts, C.A., Tumeo, M.A., Sinz, J.M.: The commons game: Its instructional value when used in a natural resources management context. Simulation & Gaming 22(1), 5ā18 (1991)
Laskari, E.C., Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization for minimax problems. In: CEC 2002, pp. 1582ā1587 (2002)
Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction. Prentice-Hall, Inc., Upper Saddle River (1989)
Powers, R.B., Boyle, W.: Generalization from a commons-dilemma game: The effects of a fine option, information, and communication on cooperation and defection. Simulation & Gaming 14(3), 253ā274 (1983)
Powers, R.B., Duss, R.E., Norton, R.S.: THE COMMONS GAME Manual (1977)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Verkhogliad, P., Oommen, B.J. (2011). Using Artificial Intelligence Techniques for Strategy Generation in the Commons Game . In: Corchado, E., KurzyÅski, M., WoÅŗniak, M. (eds) Hybrid Artificial Intelligent Systems. HAIS 2011. Lecture Notes in Computer Science(), vol 6678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21219-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-21219-2_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21218-5
Online ISBN: 978-3-642-21219-2
eBook Packages: Computer ScienceComputer Science (R0)