Skip to main content

Using Artificial Intelligence Techniques for Strategy Generation in the Commons Game

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6678))

Included in the following conference series:

Abstract

In this paper, we consider the use of artificial intelligence techniques to aid in discovery of winning strategies for the Commons Game (CG).

The game represents a common scenario in which multiple parties share the use of a self-replenishing resource. The resource deteriorates quickly if used indiscriminately. If used responsibly, however, the resource thrives. We consider the scenario one player uses hill climbing or particle swarm optimization to select the course of action, while the remaining Nā€‰āˆ’ā€‰1 players use a fixed probability vector. We show that hill climbing and particle swarm optimization consistently generate winning strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdelbar, A.M., Ragab, S., Mitri, S.: Applying co-evolutionary particle swam optimization to the egyptian board game seega. In: ASPGP 2003. pp. 9–15 (2003)

    Google Scholar 

  2. Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines. Neurocomputing 72(13-15), 2729–2730 (2009)

    Article  Google Scholar 

  3. Abraham, A., Kƶppen, M., Franke, K. (eds.): Design and application of hybrid intelligent systems. Amsterdam, IOS Press (2003)

    Google Scholar 

  4. Axelrod, R., Hamilton, W.: The evolution of cooperation. Science 211(4489), 1390 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baba, N.: The commons game by microcomputer. Simulation & Gaming 15, 487–492 (1984)

    Google Scholar 

  6. Baba, N.: Utilization of genetic algorithms in order to make game playing much more exciting. In: KES 1999, pp. 473–476 (1999)

    Google Scholar 

  7. Baba, N., Nagasawa, K., Handa, H.: Utilization of Soft Computing Techniques for Making Environmental Games More Exciting –Toward an Effective Utilization of the COMMONS GAME. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part II. LNCS (LNAI), vol. 5178, pp. 411–417. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Brunovsḱý, P.: The commons game. Ekonomicky Casopis 55(8), 811–814 (2007)

    Google Scholar 

  9. Conradie, J., Engelbrecht, A.P.: Training bao game-playing agents using coevolutionary particle swarm optimization. In: CIG 2006, pp. 67–74 (2006)

    Google Scholar 

  10. Faysse, N.: Coping with the tragedy of the commons: Game structure and design of rules. Journal of Economic Surveys 19(2), 239–261 (2005)

    Article  Google Scholar 

  11. Handa, H., Baba, N.: Evolutionary computations for designing game rules of the commons game. In: CIG 2007, pp. 334–339 (2007)

    Google Scholar 

  12. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: ICNN 1995, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  13. Kirts, C.A., Tumeo, M.A., Sinz, J.M.: The commons game: Its instructional value when used in a natural resources management context. Simulation & Gaming 22(1), 5–18 (1991)

    Article  Google Scholar 

  14. Laskari, E.C., Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization for minimax problems. In: CEC 2002, pp. 1582–1587 (2002)

    Google Scholar 

  15. Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction. Prentice-Hall, Inc., Upper Saddle River (1989)

    MATH  Google Scholar 

  16. Powers, R.B., Boyle, W.: Generalization from a commons-dilemma game: The effects of a fine option, information, and communication on cooperation and defection. Simulation & Gaming 14(3), 253–274 (1983)

    Article  Google Scholar 

  17. Powers, R.B., Duss, R.E., Norton, R.S.: THE COMMONS GAME Manual (1977)

    Google Scholar 

  18. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verkhogliad, P., Oommen, B.J. (2011). Using Artificial Intelligence Techniques for Strategy Generation in the Commons Game . In: Corchado, E., Kurzyński, M., WoÅŗniak, M. (eds) Hybrid Artificial Intelligent Systems. HAIS 2011. Lecture Notes in Computer Science(), vol 6678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21219-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21219-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21218-5

  • Online ISBN: 978-3-642-21219-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics