Abstract
In this paper we propose a method for locating the optic disc (OD) in retinal images automatically using a generalization of majority voting scheme. Applying more different optic disc detectors for voting we can achieve better performance for the automatic detection system than for each individual algorithm. The location with maximum number of OD center candidates falling within a radius predefined clinically can be used to localize the OD center. In contrast to the classical voting system we can make good decision if the number of algorithms detecting the optic disc correctly is less than the half of the overall number of algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mahfouz, A.E., Fahmy, A.S.: Ultrafast Localization of the Optic Disc Using Dimensionality Reduction of the Search Space. Med. Image Comput. Assist. Interv. 12, 985–992 (2009)
Harangi, B., Qureshi, R.J., Csutak, A., Peto, T., Hajdu, A.: Automatic Detection of the Optic Disc Using Majority Voting in a Collection of Optic Disc Detectors. In: 7th IEEE International Symposium on Biomedical Imaging, pp. 1329–1332. IEEE Press, Rotterdam (2010)
Hansen, L.K., Salamon, P.: Neural Network Ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 993–1001 (1990)
Kuncheva, L.I.: Combining Pattern Classifiers, Methods and Algorithms. John Wiley & Sons, Inc., New Jersey (2004)
Lam, L., Suen, C.Y.: Application of Majority Voting to Pattern Recognition: An Analysis of Its Behavior and Performance. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans 27, 553–568 (1997)
Gilat, D.: Monotonicity of a Power Function: An Elementary Probabilistic Proof. The American Statistician 31, 91–93 (1977)
Appel, M.J., Najim, C.A., Russo, R.P.: Limit Laws for the Diameter of a Random Point Set. Adv. Appl. Probab. 34(1), 1–10 (2002)
Altincay, H.: On Naive Bayesian Fusion of Dependent Classifiers. Pattern Recognition Letters 26, 2463–2473 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Toman, H., Kovacs, L., Jonas, A., Hajdu, L., Hajdu, A. (2011). A Generalization of Majority Voting Scheme for Medical Image Detectors. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds) Hybrid Artificial Intelligent Systems. HAIS 2011. Lecture Notes in Computer Science(), vol 6679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21222-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-21222-2_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21221-5
Online ISBN: 978-3-642-21222-2
eBook Packages: Computer ScienceComputer Science (R0)