Skip to main content

Empirical Study of Q-Learning Based Elemental Hose Transport Control

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6679))

Included in the following conference series:

Abstract

Non-rigid physical elements attached to robotic systems introduce non-linear dynamics that requires innovative control approaches. This paper describes some of our results applying Q-Learning to learn the control commands to solve a hose transportation problem. The learning process is developed in a simulated environment. Computationally expensive but dynamically accurate Geometrically Exact Dynamic Splines (GEDS) have been used to model the hose to be transported by a single robot, showing the difficulties of controlling flexible elastic passive linking elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duro, R.J., Graña, M., de Lope, J.: On the potential contributions of hybrid intelligent approaches to multicomponen robotic system development. Information Sciences 180(14), 2635–2648 (2010)

    Article  Google Scholar 

  2. Prieto, A., Bellas, F., Caamaño, P., Duro, R.J.: Automatic behavior pattern classification for social robots. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS, vol. 6076, pp. 88–95. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Echegoyen, Z.: Contributions to visual servoing for legged and linked multicomponent robots. Ph.D. dissertation, UPV/EHU (2009)

    Google Scholar 

  4. Echegoyen, Z., Villaverde, I., Moreno, R., Graña, M., d’Anjou, A.: Linked multi-component mobile robots: modeling, simulation and control. In: Robotics and Autonomous Systems, vol. 58(12), pp. 1292–1305 (2010)

    Google Scholar 

  5. Fernandez-Gauna, B., Lopez-Guede, J.M., Zulueta, E.: Linked multicomponent robotic systems: Basic assessment of linking element dynamical effect. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS, vol. 6076, pp. 73–79. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Fernandez-Gauna, B., Lopez-Guede, J.M., Graña, M.: Learning hose transport control with q-learning. Neural Network World 20(7), 913–923 (2010)

    Google Scholar 

  7. Maravall, D., de-Lope, J., Martin, J.A.: Hybridizing evolutionary computation and reinforcement learning for the design of almost universal controllers for autonomous robots. Neurocomputing 72(4-6), 887–894 (2009)

    Article  Google Scholar 

  8. Martin, J.A., de Lope, J., Maravall, D.: Adaptation, anticipation and rationality in natural and artificial systems: Computational paradigms mimicking nature. Natural Computing 8(4), 757–775 (2009)

    Article  MathSciNet  Google Scholar 

  9. Martin, J.A., de Lope, J., Santos, M.: A method to learn the inverse kinematics of multi-link robots by evolving neuro-controllers. Neurocomputing 72(13-15), 2806–2814 (2009)

    Article  Google Scholar 

  10. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  11. Theetten, A., Grisoni, L., Andriot, C., Barsky, B.: Geometrically exact dynamic splines. Computer-Aided Design 40(1), 35–48 (2008)

    Article  Google Scholar 

  12. Graña, M., Torrealdea, F.J.: Hierarchically structured systems. European Journal of Operational Research 25, 20–26 (1986)

    Article  Google Scholar 

  13. Graña, M., d’Anjou, A., Albizuri, F.X., Hernandez, M., Torrealdea, F.J., Gonzalez, A.I.: Experiments of fast learning with high order boltzmann machines. Applied Intelligence 7(4), 287–303 (1997)

    Article  Google Scholar 

  14. d’Anjou, A., Graña, M., Torrealdea, F.J., Hernandez, M.: Solving satisfiability via boltzmann machines. IEEE Transactions on pattern analysis and machine intelligence 15, 514–521 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lopez-Guede, J.M., Fernandez-Gauna, B., Graña, M., Zulueta, E. (2011). Empirical Study of Q-Learning Based Elemental Hose Transport Control. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds) Hybrid Artificial Intelligent Systems. HAIS 2011. Lecture Notes in Computer Science(), vol 6679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21222-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21222-2_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21221-5

  • Online ISBN: 978-3-642-21222-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics