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Abstract. The class ofv-regular languages provides a robust specification lan-
guage in verification. Every-regular condition can be decomposed into a safety
part and a liveness part. The liveness part ensures thattlsiognegood hap-
pens “eventually”. Finitary liveness was proposed by Alad a&enzinger as

a stronger formulation of liveness [AHO8]. It requires thiaere exists an un-
known, fixed bound such that something good happens withitnansitions. In
this work we consider automata with finitary acceptance itimmé defined by
finitary Buchi, parity and Streett languages. We give thaefirotogical complex-

ity of acceptance conditions, and present a regular-esjmresharacterization

of the languages they express. We provide a classificatidinitdry and classi-

cal automata with respect to the expressive power, and gitimal algorithms

for classical decisions questions on finitary automata. &yesljow that the fini-
tary languages ar&;-complete; (b) present a complete picture of the expressive
power of various classes of automata with finitary and irdiyitacceptance con-
ditions; (c) show that the languages defined by finitary paittomata exactly
characterize the star-free fragmentwaB-regular languages; and (d) show that
emptiness iINLOGSPACE-complete and universality as well as language in-
clusion arePSPACE-complete for finitary automata.

1 Introduction

Classicalw-regular languages: strengths and weaknes$he class ofu-regular
languages provides a robust language for specificationoleing control and
verification problems (sea.g [PR89,RW87]). Everyw-regular specification
can be decomposed into a safety part and a liveness[part [AB8S safety
part ensures that the component will not do anything “badtlisas violate an
invariant) within any finite number of transitions. The lass part ensures that
the component will do something “good” (such as proceedespond, or ter-
minate) in the long-run. Liveness can be violated only inlitiné, by infinite se-
guences of transitions, as no bound is stipulated on whefytoa” thing must
happen. This infinitary, classical formulation of livendss both strengths and
weaknesses. A main strength is robustness, in particalz@pendence from the
chosen granularity of transitions. Another main strengthkimplicity, allowing
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liveness to serve as an abstraction for complicated safetglittons. For exam-
ple, a component may always respond in a number of transitiwat depends,
in some complicated manner, on the exact size of the stimMkisor correct-
ness, we may be interested only that the component will respeventually”.
However, these strengths also point to a weakness of thsicdhslefinition of
liveness: it can be satisfied by components that in practiegeite unsatisfac-
tory because no bound can be put on their response time.

Stronger notion of liveness.For the weakness of the infinitary formulation of
liveness, alternative and stronger formulations of lignkave been proposed.
One of these ifinitary liveness [[AH98]: finitary liveness does not insist on a
response within a known bourdi.e, every stimulus is followed by a response
within b transitions), but on response within some unknown bouusgl there
existsb such that every stimulus is followed by a response withiransitions).
Note that in the finitary case, the bouhdnay be arbitrarily large, but the re-
sponse time must not grow forever from one stimulus to the. nexthis way,
finitary liveness still maintains the robustness (indejgeé of step granularity)
and simplicity (abstraction of complicated safety) of ttadal liveness, while
removing unsatisfactory implementations.

Finitary parity and Streett conditions. The classical infinitary notion of fair-
ness is given by the Streett condition: it consists of a set gdirs of requests
and corresponding responses (grants) and requires that mapiest that ap-
pears infinitely often must be responded infinitely oftes filtitary counterpart,
the finitary Streett condition requires that there is a botrsdich that in the
limit every request is responded withinsteps. The classical infinitary parity
condition consists of a priority function and requires tteg minimum priority
visited infinitely often is even. Its finitary counterpatgtfinitary parity condi-
tion requires that there is a bouhduch that in the limit after every odd priority
a lower even priority is visited withih steps.

Results on classical automataThere are several robust results on the lan-
guages expressible by automata with infinitary Blchi, paitd Streett condi-
tions, as follows: (aJopological complexityit is known that Biichi languages
arell,-complete, whereas parity and Streett languages lie indbkehn closure

of Xy and ], [MP92]; (b) Automata expressive poweron-deterministic au-
tomata with Blichi conditions have the same expressive paweleterministic
and non-deterministic parity and Streett automata [Clife&#92]; and (CRegular-
expression characterizatiorihe class of languages expressed by deterministic
parity is exactly defined by-regular expressions (see the handbaok [Tho97]
for details).



Our results. For finitary Bichi, parity and Streett languages, topolaljiautomata-

theoretic, regular-expression and decision problemseguwdere all missing. In
this work we present results in the four directions, as fdp

1. Topological complexityWe show that finitary Buichi, parity and Streett con-
ditions areX’s-complete.

2. Automata expressive pow#ve show that finitary automata are incompara-
ble in expressive power with classical automata. As in tfiaitray setting,
we show that non-deterministic automata with finitary Biigiarity and
Streett conditions have the same expressive power, as sva#étarministic
parity and Streett automata, which are strictly more exgiwesthan deter-
ministic finitary Blchi automata. However, in contrast te thfinitary case,
for finitary parity condition, non-deterministic automadee strictly more
expressive than the deterministic counterpart. As a bygymbwe derive
boolean closure properties for finitary automata.

3. Regular-expression characterizatioie consider the characterization of
finitary automata through an extensionwiregular languages defined as
wB-regular languages by [BCD6]. We show that languages debypeuthn-
deterministic finitary Biichi automata are exactly the §tee- fragment of
wB-regular languages.

4. Decision problemsWe show that emptiness SLOGSPACE-complete
and universality as well as language inclusion BBPPACE-complete for
finitary automata.

Related works.The notion of finitary liveness was proposed and studield 98|,
and games with finitary objectives was studied in [CHHO09].eheralization of
w-regular languages asB-regular languages was introduced [in [BC06] and
variants have been studied in [BT09] (also see [B0j10] fanraesy); a topolog-
ical characterization has been givenlin [HSIT10]. Our wodtglwith topolog-
ical and automata-theoretic studies of finitary languaggplores the relation
between finitary languages andB3-regular expressions, rather than identify-

ing a subclass ofuB-regular expressions. We identify the exact subclass of

w B-regular expressions that corresponds to non-deternaiffiisitary parity au-
tomata.

2 Definitions

2.1 Languages topological complexity

Let X be a finite set, called the alphabet. A wardis a sequence of letters,
which can be either finite or infinite. A language is a set ofdgof. C Y* is a
language over finite words addC X over infinite words.
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Cantor topology and Borel hierarchy. Cantor topology on¥* is given by
opensets: a language is open if it can be describedlas X“ whereW C
27, Let Xy denote the open sets aiifi denote the closed sets (a language is
closed if its complement is open): they form the first levethaf Borel hierarchy.
Inductively, we defineX’;  ; is obtained as countable union & sets; and7; 1
is obtained as countable intersection’gfsets. The higher a language is in the
Borel hierarchy, the higher its topological complexity.

Since the above classes are closed under continuous pesimagan define
the notion of Wadge reductioh [Wad84]:reduces td./, denoted byl < L/,
if there exists a continuous functiofi: X* — X* suchL = f~(L’), where
f~ (L) is the preimage of. by f. A language is hard with respect to a class
if all languages of this class reduce to it. If it additiogdielongs to this class,
then it is complete.

For L C X%, letpref(L) C X* be the set of finite prefixes of words In
The following property holds:

Proposition 1. For all languagesL C X%, L is closed if and only if, for all
infinite wordsw, if all finite prefixes ofv are inpref(L), thenw € L.

Classical liveness conditionsWe now consider three classes of languages that
are widespread in verification and specification. They ddifileaess properties,

i.e, intuitively say that something good will happen “evenlyialFor an infinite
word w, let Inf(w) C X denote the set of letters that appear infinitely often in
w. The class of Bichi languages is defined as follows, given

Biichi(F) = {w | Inf(w) N F # 0}

i.e, the Bichi condition requires that some letterFirappears infinitely often.
The class of parity languages is defined as follows, gjvert. — N a priority
function that maps letters to integers (representing ipigs):

Parity(p) = {w | min(p(Inf(w))) is ever}

i.e, the parity condition requires that the lowest priority #ppears infinitely of-
ten is even. The class of Streett languages is defined as/flpven(R, G) =
(Ri,Gi)1<i<d, WhereR;, G; C X are request-grant pairs:

Streett(R, G) = {w | Vi,1 <i < d,Inf(w) N R; # 0 = Inf(w) NG; # 0}

i.e, the Streett condition requires that for all requéeRBisif it appears infinitely
often, then the corresponding graki also appears infinitely often.

The following theorem presents the topological complerityhe classical
languages:



Theorem 1 (Topological complexity of classical language$AP92]).
— Forall ) ¢ F C X, the languagé3iichi(F) is ITo-complete.
— The parity and Streett languages lie in the boolean clostitEcand I15.

2.2 Finitary languages

The finitary parity and Streett languages have been definfE€HR09]. We re-
call their definitions, and also specialize them to finitatycBi languages. Let
(R, G) = (Ru Gi)1§i§d1 whereR;, G; C X, the definition fOIFinStreett(R, G)
uses distance sequence as follows:

dist] (w, (R, G)) = { * wr B

inf{k/ —k |k > k,wy € G} wy € R;
i.e, given a positiork whereR; is requesteddisti(w, (R,@)) is the time steps
(number of transitions) between the requistand the corresponding graft;.
Note thatinf(f)) = co. Thendisty(w, (R, G)) = max{dist] (w,p) | 1 < j <
d} and:

FinStreett(R, G) = {w | lim sup disti(w, (R, G)) < oo}
k

i.e, the finitary Streett condition requires the supremum liafithe distance
sequence to be bounded.

Since parity languages can be considered as a particukiot&reett lan-
guages, wher&'; C Ry C G2 C Rs .. ., the latter allows to definBinParity (p).
The same applies to finitary Blichi languages, which is aqa4ati case of fini-
tary parity languages where the letters from thefséive priority0 and others
have priority 1. We get the following definitions. Let : > — N a priority
function, we define:

disty,(w,p) = inf{k' — k | K’ > k, p(wy) is even anch(wy) < p(wy)}

i.e, given a positiork wherep(wy,) is odd,dist, (w, p) is the time steps between
the odd priorityp(wy) and a lower even priority. TheRinParity (p) = {w |
lim sup,, distg(w,p) < oo}. We define similarly the finitary Buchi language:
givenF C X, let:

nexty(w, F) = inf{k' — k| k' > k,wp € F}

i.e, nexty(w, F') is the time steps before visiting a letterih ThenFinBiichi(F') =
{w | lim sup;, nextg(w, F) < oco}.



2.3 Automata,w-regular and finitary languages

Definition 1. An automaton is a tupled = (Q, X, Qo,d, Acc), where(@ is
a finite set of states), is the finite input alphabet)y, C Q is the set of initial
statesg C @ x X x Q is the transition relation andicc C Q¥ is the acceptance
condition.

An automaton is deterministic if it has a single initial stand for every
state and letter there is at most one transition. The tiangielation of deter-
ministic automata are described by functionsQ x X~ — @Q. An automaton is
complete if for every state and letter there is a transitidis is the case when
the transition function isotal.

Runs. A run p = qoq1 ... is a word overQ, whereqy € Q. The runp is
accepting if it is infinite angh € Acc. We will write p % ¢ to denote(p, a, q) €
4. An infinite wordw = wows . .. induces possibly several runs df a word
w induces a rum = qoq; ... ifforall n € N, ¢, =% ¢n11.... The language
accepted by4, denoted by’ (A) C X¥, is:

L(A) = {w | there exists an accepting rurinduced byw}.

Acceptance conditionsWe will consider various acceptance conditions for au-
tomata obtained from the last section by considetihgs the alphabet. For ex-
ample, givenF' C @, the languageBiichi(F') andFinBiichi(F') define Bichi
and finitary Blchi acceptance conditions, respectiveljtofata with finitary
acceptance conditions are referred as finitary automadasichl automata are
those equipped with infinitary acceptance conditions.

Notation 1 We use a standard notation to denote the set of languageg-reco
nized by some class of automata. The first letter is eifieor D, where N
stands for “non-deterministic” and stands for “deterministic”. The last letter
refers to the acceptance conditioR stands for “Blchi”, P stands for “par-

ity” and S stands for “Streett”. The acceptance condition may be peefiky

F for “finitary”. For example, NP denotes non-deterministic parity automata,
and DF'S denotes deterministic finitary Streett automata. We hagédiftowing

combination:
B

HISUR T
N S
We denote by, the class of languages accepted by deterministic parity au-

tomata. The following theorem summarizes the results ofesgive power of
classical automata [Biic62,Sal92,Chio74,GH82]:
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Theorem 2 (Expressive power results for classical automaja

DBcCcL,=NB=DP=NP=DS§=NS

3 Topological complexity

In this section we define a finitary operatdniCloOmg that allows us to de-
scribe finitary Blichi, finitary parity and finitary Streethzuages topologically
and to relate them to the classical Biichi, parity and Sttaeffjuages; we then
give their topological complexity.

Union-closed-omega-regular operator on languagesiven a languagé. C
X“, the languagéJniCloOmg(L) C X“ is theunion of the languaged/ that
are subsets of, w-regular andclosed i.e, UniCloOmg(L) = | {M | M C
L,M € II;,M € L,}.

Proposition 2. For all languagesL C X* we haveUniCloOmg(L) € Xs.

Proof. Since the set of finite automata can be enumerated in sequeiotlews
thatLL,, is countable. So for all languagésthe selUniCloOmg(L) is described
as a countable union of closed sets. Heda&loOmg(L) € 3. |

We present gumping lemmdor w-regular languages that we will use to
prove the topological complexity of finitary languages.

Lemmal (A pumping lemma).Let M be anw-regular language. There ex-
ists ny such that for all wordsw € M, for all positions; > ng, there exist
Jj < i1 < iy < j+ np such that for allf > 0 we havewguwws ... w;; —1 -
(wilwiﬁl e w,-2_1)£ CWigWig+1 - -+ € M.

Proof. Given M is aw-regular language, lett be a complete and deterministic
parity automata that recognizéd, and letny be the number of states of.
Consider a wordv = wow ws . .. such thatw € M, and letp = qoq1q2 - .. be
the unigue run induced hy in .A. Consider a positior in w such thatj > ny.
Then there exisf < i; < i2 < j + ng such thaty;, = ¢;,, this must happen as
A hasn, states. Fof > 0, if we consider the wordy’ = wowws ... w;, 1 -
(wiy Wiy 41 - Wip—1)" - Wiywiy 11 - - ., then the unique run induced by in A

is p' = qoq102 - @ii—1 * (Giy @iy 41 - - - Qis—1)" * QiyGint1 - - .. Since the parity
condition is independent of finite prefixes and the puis accepted by, it
follows thatp’ is accepted byd. Since.A recognizesM, we havew’ € M. B

The following lemma shows thatinStreett(R, ) is obtained by applying
the UniCloOmg operator tdStreett(R, G).
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Lemma 2. For all (R,G) = (R;,Gi)1<i<a, WhereR;, G; C ¥, we have
UniCloOmg(Streett(R, G)) = FinStreett(R, G).

Proof. We present the two directions of the proof.

1. We first show that/niCloOmg(Streett(R,G)) C FinStreett(R, G). Let
M C Streett(R, G) such thatV/ is closed ands-regular. Letv = wow; . .. €
M, and assume towards contradiction, thai sup,, disty(w, (R,G)) =
oo. Hence for allng € N, there exists» € N such thatn > ng and
dist,, (w, (R,G)) > ng. Letng € N given by the pumping lemma ok,
from above givem, we obtainj such thatj > ny anddist;(w, (R, G)) >
ng. By the pumping lemma we obtain the witngss. i; < is < j+ng. Let
U= WoWT - .- Wiy -1,V = Wj; Wiy +1 - - - Wip—1 andw’ = WipWig41 -« -+ Since
w € M, by the pumping lemma for all > 0 we haveuv‘w’ € M. This
entails that all finite prefixes of the infinite wotd* are inpref (). Since
M is closed, it follows thatv®” € M. Sincedist;(w, (R, G)) > ny it fol-
lows that there is some requésh positionj, and there is no corresponding
granti for the nextng steps. Hence there is a positignin v such that there
is request; at 7/ and no corresponding grant in and thus it follows that
the worduv® ¢ Streett(R, G). This contradicts thad/ C Streett(R, G).
Hence it follows that/niCloOmg(Streett(R, G)) C FinStreett(R, G).

2. We now show the conversgniCloOmg(Streett(R, G)) 2 FinStreett(R, G).
We have:

FinStreett(R, G) = {w | limsup disty (w, (R, G)) < oo}
k

= U {w | limsup distg(w, (R, G)) < B}
BeN k

= U U {w | Vk > n,distg(w, (R,G)) < B}
BeNneN

The languag€w | Yk > n,distg(w, (R,G)) < B} is closedw-regular,
and included irstreett (R, G). HenceFinStreett(R, G) C UniCloOmg(Streett(R, G)).

The result follows. |
Lemmd2 naturally extends to finitary parity and finitary Billemguages:

Corollary 1. The following assertions hold:

— Forall p: ¥ — N, we haveUniCloOmg(Parity(p)) = FinParity(p);
— Forall F C ¥, we haveUniCloOmg(Biichi(F')) = FinBiichi(F).



Bulchi languages are a special case of parity languages aaityllanguages
are in turn a special case of Streett languages. Since distatuences for par-
ity and Bichi languages have been defined as a special caseett &inguages,
Corollary(1 follows from Lemmal2.

The following lemma states that finitary Blichi languagesX@recomplete.

Theorem 3 (Topological characterization of finitary languayes).The finitary
Buchi, finitary parity and finitary Streett ar®5-complete.

Proof. We show that ifif ¢ F C X, thenFinBiichi(F) is Xs-complete. It fol-

lows from Corollary 1 thaFinBiichi(F') € Xy. We now show thaFinBiichi(F)

is X»-hard. By Theorernl1 we have tHaitichi( F') is II,-complete, henc&\ Biichi(F')
is X5-complete. We present a topological reduction to showXiatBiichi(F') <
FinBiichi(F)). Letd : X¥ — X“ be the stuttering function defined as follows:

w =wy wip ... Wy,
b(w) = wo WiwWy ... WpWy, ... Wy ...
N~ N———
2 an

The functionb is continuous. We check that the following holds:
Inf(w) C F iff 3B € N,3n € N,Vk > n,next(b(w), F') < B.

Left to right direction: assume that from the positiof w, letters belong td'.
Then from the positio2™ —1, letters ofb(w) belong toF’, thennexty (b(w), F) =
Ofork>2"—1.

Right to left direction: letB andn be integers such that for all > n we
havenexty (b(w), F) < B. Assume2*~! > B andk > n, then the letter

in position2* — 1 in b(w) is repeate@*~! times, thusnext (b(w), F) is ei-
ther 0 or higher thar2*~!. The latter is not possible since it must be less than
B. 1t follows that the letter in positiork in w belongs toF. Hence we get
Y¥\Biichi(F) = FinBiichi(F), soFinBiichi(F') is Xy-complete. From this
we deduce the two other claims as special cases. |

4 Expressive power of finitary automata

In this section we consider the finitary automata, and compair expressive
power to classical automata. We then address the questidatefminization.
Deterministic finitary automata enjoy nice properties #ikiws to describe lan-
guages they recognize using teiCloOmg operator. As a by-product we get
boolean closure properties of finitary automata.
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Fig. 1. A finitary Biichi automatond

4.1 Comparison with classical automata

Finitary conditions allow to express bounds requirements:

Example 1 DFB ¢ L,). Consider the finitary Blchi automaton shown in
Fig. [, the state labeled O being its only final state. Its l@gg iSLp =
{70l ). (b11af M) (b2a/P)) ... | f: N = N, f boundedYi € N, j; € N}.
Indeed,0-labeled state is visited while reading the letberand thel-labeled
state is visited while reading the letter An infinite word is accepted iff the
0-labeled state is visited infinitely often and there is a libbatween two con-
secutive visits of th@-labeled state. We can easily see thatis notw-regular,
using proof ideas from [BCO06]: its complement woulddoeegular, so it would
contain ultimately periodic words, which is not the case.

However, finitary automata cannot distinguish between “‘mi@si’ and “only
blS":

Example 2 DB ¢ NFB). Consider the language of infinitely mags, i.e,
L; = {w | whas an infinite number af}. The languagd_; is recognized by
a simple deterministic Blchi automaton. However, we carwstimat there is
no finitary Blchi automata that recogniz&s. Intuitively, such an automaton
would, while reading the infinite wordr = ab ab? ab3 ab*...ab"... € Ly,
have to distinguish between all b’s, otherwise it would atcg word with
only b’s at the end. Assume towards contradiction that tlesists.A a non-
deterministic finitary Blchi automaton wit states recognizind.;. Let us
consider the infinite wordy. Sincew must be accepted by, there must be an
accepting rurp, represented as follows:

a b a pntl
qQ —>Po—>q1---Gn = Pn — qnt1---
and
b b b b
Pn—1—7qn1 —7qn2.--- 7 qnn—-1 —7qnn =qn - -
Sincep is accepting, there exist8 € N, andn € N, such that for alk > n
we havedisty(p, p) < B. Letc be the lowest priority infinitely visited ip. As

p is acceptinge is even. The statg,_; is in positionw in p. Letk be an
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integer such that (a@'(’;—“) >nand (b)k > (N + 1) - B. Let us consider the
set of stategqy, 1, . .., qx 1 }- Since the distance function is boundedByrom
then-th position, the priority: appears at least once in each set of consecutively
visited states of sizé. Sincew > n andg 1 is the state following,_1,

the latter holds frong;, ;. Sincek > (N+1)-B, itappears at least +1 times in
{@k1,---,qr} Since there isV states inA, at least one state has been reached
twice. We can thus iterate: the infinite wotd = ab ab? ab® ab* ... 0" 1a b,

and the wordw’ is accepted byA. However,w’ ¢ L; and hence we have a

contradiction.
We summarize the results in the following theorem.

Theorem 4. The following assertions hold: (&)B ¢ NFB; (b) DFB ¢ NB.

4.2 Deterministic finitary automata

Given a deterministic complete automatdrwith accepting conditiodcc, we
will consider the language obtained by usidgiCloOmg(Acc) as acceptance
condition. Treating the automaton as a transducer, we denghne following
function: C'4 : ¥ — Q* which maps an infinite word to the unique rum of
A onw (there is a unique run sincé is deterministic and complete). Then:

L(A) ={w | Ca(w) € Acc} = C(Acc).

We will focus on the following property’; (UniCloOmg(Acc)) = UniCloOmg(C 7 (Acc)),
which follows from the following lemma. Deterministic cotefe automata, re-

garded as transducers, preserve topologywanegularity. Hence applying the

finitary operatotUniCloOmg to the input (the languagg) or to the acceptance
condition Acc is equivalent.

Lemma 3. For all A = (Q, X, qo, 9, Acc) deterministic complete automaton,
we have:

1. forall A C Q“, Alis closed=- C',(A) closed (4 is continuous).

2. forall L C X, Lis closed= C4(L) closed (4 is closed).

3. forall A C Q*, Aisw-regular=- C;(A) w-regular.

4. forall L C X%, Lisw-regular=- C 4(L) w-regular.

Proof. We prove all the cases below.

1. Let A C Q¥ such thatA is closed. Letw be such that for alh € N we
havewy ... w, € pref(C,(A)). We define the rup = C4(w) and show
thatp = qoq1... € A. SinceA is closed, we will show for alh € N
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we havegy . .. q, € pref(A). From the hypothesis we have) ... w,_1 €
pref(C; (A)), and then there exists an infinite warduch thatC 4 (wo . . . wy,—1u) €

A. LetCa(wp ... wy_1u) = qoq, ...q, ..., then we havey =% ¢ “5
gy Ly ¢l -+ Since A is deterministic, we get; = ¢;, and hence
qo - - - qn € pref(A).

2. Let . C X% such thatl is closed. Letp = ¢gq; ... such that for all
n € N we haveg...q, € pref(C4(L)). Then for alln € N, there ex-
ists a worchwowy . .. w,_q Such thatgy =% q; 2% qo... —=% g,, and
wowy . .. wy—1 € pref(L). We define by induction on an infinite nested
sequence of finite wordsgw; . . . w,, € pref(L). We denote byw the limit
of this nested sequence of finite words. We have phat C 4(w). SinceL
is closedw € L.

3. LetA C Q¥ such thatd recognized by a Buchi automatth= (@3, Q, Py, 7, F).
We define the Blchi automatah= (Q x Qp, X, {q} x Fo,v,Qp X F),
where(q1,p1) = (q2,p2) iff g1 5 ¢o in A andp, 2y po in B. We now
show the correctness of our construction. et wow; ... accepted by,
then there exists an accepting ruiras follows:

(90,70) == (q1,01) — (92,02) - - - (Gns Pr) — (Gn15 Prt1) - - -

where the second component visitsnfinitely often. Hence:

wo w1 W, .
i G0O—q —q¢. - qn —> qnt1-..INA
Po q—0>p1 q—1>p2---pnqi>pn+1...in8

Hence from(t), we haveC a(w) = qoq1 -+ € L(B) = A, and it follows
thatw € C',(A). Conversely, letv € C;(A), then we have = C4(w) =
qoq -+ € A = L(B). Then the above statemeftt) holds, which entails
thatw is accepted by. It follows thatC recognizes” (A).

4. LetL C X* suchthatL is recognized by a Blichi automatn= (Qg, X, Py, 7, F).
We define the Bichi automata@h= (Q x @Qg,Q,{q} x Fo,v,Q X F),
where(q, p1) % (¢, ps) iff there existss € ¥, such thay % ¢/ in A and
p1 2 pyin B. A proof similar to above show th&trecognizesC 4 (L).

The desired result follows. [ |

Theorem 5. For any deterministic complete automatdn= (Q, X, qo, 9, Acc)
recognizing a languagé, the finitary restriction of this automatdniCloOmg(.A) =
(@, %, qo,0,UniCloOmg(Acc)) recognizedniCloOmg(L).

Proof. Awordw is accepted byniCloOmg(A) iff w € C; (UniCloOmg(Acc)) =
UniCloOmg(C 4 (Acc)) = UniCloOmg(L). n
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Theorenb allows to extend all known results on determimiskasses to
finitary deterministic classes: as a corollary, we h&N&3 ¢ DFP andDFP =
DFS.

We now show that non-deterministic finitary parity automata more ex-
pressive than deterministic finitary parity automata. Heevefor every lan-
guagel € L, there existsd € DP such thatA recognizesl, and by The-
orem[5 the deterministic finitary parity automatoniCloOmg(.A) recognizes
UniCloOmg(L).

Corollary 2. For every languagd. € L, there is a deterministic finitary parity
automataA such that(.A) = UniCloOmg(L).

Example 3 DFP C NFP). As for Examplé 1L we consider the languadgs=
{(a?ob ). (a7 bMWY (a7207P)) .| f: N = N, f boundedyi € N, j; € N}
andLy = {(aObi0) . (afMpir) . (afPbi2) .. | f: N = N, f boundedyi €
N, j; € N}. It follows from Exampldll that botti; and L, belong toDFP,
hence taVF'P. A finitary parity automaton, relying on non-determinisseas-
ily built to recognizel, = L1 U Ly, hencel € NFP. We can show that we
cannot bypass this non-determinism, as by reading a wordawe to decide
well in advance which sequence will be bounded: a’s oritgs,L ¢ DFP. To
prove it, we interleave words of the for(a* - b*)* - ¢ and(a* - b*)* - b*, and
use a pumping argument to reach a contradiction. Assumedswantradiction
that L € DFP, and letA be a deterministic complete finitary parity automaton
with N states that recognizds Let gy be the starting state. Sina& belongs to

L, its unique run o4 is accepting, and can be decomposed as follqws“:n—%
aPo aPo . .. .. C . .
sog — So — ... wWheresg is the lowest priority visited infinitely often while

readinga”. Then,a™b* belongs to thisl, its unique run onA is accepting,

. a™0 b"{) bp() bl’{) .
and has the following shapgy — s¢ — to — to — ... wherety is

the lowest priority visited infinitely often while readingb*. Repeating this
construction and by induction we have, as shown infig 2: ehgis the low-

aPo aP1 aPk

)y Q) ()

S0 S1

/ - , Sk ,
i RN 2N

qo to tr—1 tk

O O O

/ / ’
bPo bPr—1 bPk

Fig. 2. Inductive construction showing that¢ DFP.
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est priority visited infinitely often while reading™ 5" . .. a™a* andt, is the
lowest priority visited infinitely often while reading™b" . . . a™b™b*. There
must bei < j, such that; = ¢;. Letu = a™b™ ... b"% andv = b"+1 ... b,
we have:

u a™it1 v
qo = ti — Siy1 =t =1

Consider the words) = u - (a™*+* - v)* and
w* = u - (BPia™Piv) - (bFiah i) (WP RPy)

w must be accepted by since it belongs td.. Hencew* is accepted as well,
but does not belong t6. We have a contradiction, and the result follows.

Theorem 6. We haveDFP C NFP.

Observe that Theorelm 5 does not hold for non-deterministicnaata, since
we haveDP = NP but DFP C NFP.

4.3 Non-deterministic finitary automata

We can show that non-deterministic finitary Streett autancan be reduced to
non-deterministic finitary Blchi automata, and this woudthplete the picture
of expressive power comparison. We first show that non-ohétgstic finitary
Bichi automata are closed under intersection, and usetiolw $heoreni 7.

Lemma4. NFB is closed under intersection.

Proof. Let 41 = (Q1,X,61,Q%, F1) and Ay = (Qa2, X, 52,Q3, F») be two
non-deterministic finitary Blchi automata. Without losgeherality we assume
both 4, and A, to be complete. We will define a construction similar to the
synchronous product construction, where a switch betwepies will happen
while visiting F; or F,. The finitary Buchi automaton igl = (Q1 x Q2 X
{1,2}, 2,8,Q4 x Q3 x {1}, Fi x Q2 x {2} U Q1 x Fy x {1}). We define the
transition relatiory below:

d={((q1,92,k),0,(d1,45.k)) | &) & Fr1,45 ¢ F>,(q1,0,4}) € 61, (q2,0,¢5) € 02,k € {1,2}}
U{((q1,q2,1),0,(d1,45,2)) | ¢1 € Fi,(q1,0,4¢}) € 01, (q2,0,q5) € d2}
U {((q17q272)707 (qquév 1)) | qé € F27 (q17a7 q&) € 517 (q2707 qé) € 52}

Intuitively, the transition functiord is as follows: the first component mimics
the transition for automata, the second component mimics the transition for
A, and there is a switch for the third component frono 2 visiting a state in
Fy, and from2 to 1 visiting a state inFs.
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We now prove the correctness of the construction. Considerdw that is
accepted by4;, and then there exists a boud and a rurnp; in A; such that
eventually, the number of steps between two visitBitin p; is at mostB;; and
similarly, there exists a boun8, and a runp, in A, such that eventually the
number of steps between two Vvisits &b in ps is at mostBs. It follows that in
our construction there is a ryn(that mimics the rung, andp,) in A such that
eventually withinmax{ B, By} steps a state ifi} x Q2 x {2} UQ1 x Fy x {1}
is visited inp. Hencew is accepted byd. Conversely, consider a word that
is accepted by4, and letp be a run andB be the bound such that eventually
between two visits to the accepting stateg iis separated by at moét steps.
Let p; andp, be the decomposition of the rynin A; and.A,, respectively. It
follows that both in4; and.4, the respective final states are eventually visited
within at most- B steps inp; andp-, respectively. It follows thatv is accepted
by both.A; and.As. Hence we hav&(A) = L(. A1) N L(Az). [ |

Theorem 7. We haveNF'B = NFP = NFS.

Proof. We will present a reduction aVF'S to NFB and the result will follow.

Since the Streett condition is a finite conjunction of codi Inf(w) N R; #

0 = Inf(w) N G; # 0, by Lemma# it suffices to handle the special case

whend = 1. Hence we consider a non-deterministic Streett automzatos

(@, X,6,Qo, (R,q)) with (R,G) = (R1,G1). Without loss of generality we

assumeA to be complete. We construct a non-deterministic Biichiraaton
=(Q x{1,2,3}, X, ,Q0 x {1}, Q x {2}), where the transition relatiaf

is given as follows:

5/

={(¢,1),0,(¢,7) | (¢,0,q) € 6,5 € {1,2}}
U {(Q7 2)707 (q/72) ’ q/ ¢ Rla (Q7U q/) € 6}
U {(¢,2),0,(¢,3) | q € Ry, (q,0,¢) € 4}
U {(g,3),0,(d,3) | q ¢ G1,(q,0,¢') € 0}
U{(g,3),0,(¢',2) | ¢ € G1,(q,0,q) € 0}

In other words, the state component mimics the transitiod,cdnd in the sec-
ond component: (a) the automaton can choose to stay in canpiror switch

to 2; (b) there is a switch fror2 to 3 upon visiting a state ii2,; and (b) there is

a switch from3 to 2 upon visiting a state id7;. Consider a wordv accepted by

A and an accepting rumin 4, and letB be the bound on the distance sequence.
We show thatv is accepted byd’ by constructing an accepting rghin A’. We
consider the following cases:

1. Ifinfinitely many request®; are visited irp, then inA’ immediately switch
to componen®, and then mimic the rup as a runy’ in A’. It follows that
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from some pointj on every request is granted withih steps, and it follows
that after positionj, whenever the second componenBjsit becomes2
within B steps. Hencev is accepted by.

2. If finitely many requests?; are visited inp, then after some poing, there
are no more requests. The automawfmimics the rurp by staying in the
second component ddor j steps, and then switches to compor&nthen
afterj steps we always have the second compone®tasd hence the word
is accepted.

Conversely, consider a word accepted byd’ and consider the accepting run
©'. We mimic the run inA. To accept the wora, the runp’ must switch to the
second component &s say afterj steps. Then, from some point on whenever
a state with second componéhits visited, within some bound® steps a state
with second componetis visited. Hence the rupis accepting ind. Thus the
languages of4 and.A’ coincide, and the desired result follows. |

Our results are summarized in Corollaty 3 and shown i Fig 3.

Corollary 3. We have (aDFB ¢ L,; (b) DFB € DFP = DFS C NFB =
NFP = NFS; (c) DB ¢ NFB; (d) L, € NFB.

4.4 Closure properties

Theorem 8 (Closure properties).The following closure properties hold:
1. DFP is closed under intersection.

2. DFP is not closed under union.

3. NFP is closed under union and intersection.

4. DFP and NFP are not closed under complementation.

Proof. We prove all the cases below.

1. Intersection closure fapFP follows from Theorenib and from the observa-
tion thatforallL, L’ C X we haveUniCloOmg(LNL’) = UniCloOmg(L)N
UniCloOmg(L'). The observation is proved as follows. Lt € I1; N L,
andM C LN L', thenM C UniCloOmg(L) N UniCloOmg(L’), and hence
UniCloOmg(L N L') € UniCloOmg(L) N UniCloOmg(L’). Conversely,
let M7 C UniCloOmg(L) and My C UniCloOmg(L’), thenM; N M €
I, NL,, andM; N My C LN L'. HenceM; N M C UniCloOmg(LN L),
thusUniCloOmg(L) N UniCloOmg(L’) C UniCloOmg(L N L’).
Failure of closure under union f@F'P follows from Examplé B.
3. Union closure fotNFP is easy and relies on non-determinism, while inter-
section closure follows from Lemnfa 4, sind&'P = NFB.

n
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4, Failure of closure under complementation fOF'P follows from items
1. and 2., since this closure together with intersectiorswie would im-
ply union closure. Failure of closure under complementafar NFP fol-
lows from Examplé 2. Indeed, the language = {a,b}* \L; = {w |
w has a finite number af} lies in NFP; however, Examplél2 shows that
its complement is not expressible by non-deterministiddmyi Blichi au-
tomata, hence nor by non-deterministic finitary parity audta.

The result follows. [ |

NFB = NFP = NFS

Fig. 3. Expressive power classification

5 Regular Expression Characterization

In this section we address the question of giving a syntctépresentation of
finitary languages, using a special class of regular exjoress

The class ofvB-regular expressions was introduced in the work of [BC06]
as an extension af-regular expressions, as an attempt to express bounds-in reg
ular languages. To defineB-regular expressions, we need regular expressions
andw-regular expressions.

Regular expressions define regular languages over finitdsyand have the
following grammar:

L:=0|e|lo|L-L|L*"|L+L; oc€X

In the above grammar,stands for concatenation,for Kleene star and- for
union. Thenov-regular languages are finite unionf L', whereL and L’ are
regular languages of finite words. The class@-regular languages, as defined
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in [BCOE], is described by finite union df - M, whereL is a regular language
over finite words and/ is a B-regular language over infinite sequences of finite
words. The grammar faB-regular languages is as follows:

M:=0|e|lo|M-M|M*"|MP | M+M, ccX

The semantics of regular languages over infinite sequerideste words will
assign to &B-regular expression/, a language if.x*)“. The infinite sequence
(ug,u1, ...y will be denoted by:. The semantics is defined by structural induc-
tion as follows.
— () is the empty language,
— e is the language containing the single sequgace, . . . ),
— a is the language containing the single sequeface, . . . ),
— My - My is the languagé (ug - v, uy - v1,...) | w € My, v € My},
— M* is the Ianguage{(m cen Up(1) =1 Up(1) -+ Up(2)—15 - - > | u e Mf:
N — N},
— MPB is defined likeM * but we additionally require the valugigi+1) — £ (i)
to be bounded uniformly im,
- My + Myis{w | u € My,v € My, Vi,w; € {u;,v;}}.

Finally, thew-operator on sequences with nonempty words on infinitelyyman
coordinates is{ug, u1,...)* = wupug .... This operation is naturally extended
to languages of sequences by taking ¢hpower of every sequence in the lan-
guage. The class ofB-regular languages is more expressive thans, and
this is due to thex-operator. We will consider the following fragment ©f3-
regular languages where we do not usesfuperator forB-regular expressions
(however, thex-operator is allowed foL, regular languages over finite words).
We call this fragment the star-free fragmentwB-regular languages. In the
following two lemmas we show that star-freeB-regular expressions express
exactly NFB.

Lemma 5. All languages iInNNF'B can be described by a star-fregB-regular
expression.

Proof. Let A = (Q, X, J, Qq, F') be a non-deterministic finitary Blichi automa-
ton. Without loss of generality we assur@e= {1,...,n}. LetL, , = {u €

g% ¢y andMze = {u | (Ju;]); is bounded andfi,q —* q}. Then

L(A) = U Lgoq - (Mq)w-

q0€Qo,qEF

Forallg,q’ € Q we haveL, , C X* is regular. We now show that for ajle Q
the languagé/, is B-regular. ForalD < k < nandg, ¢ € Q, IetM(fq, ={u |
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(Jug)); is bounded andti, ¢ = ¢’ where all intermediate visited states are frém. .., k}}.
We show by induction of < k < n that for allg, ¢’ € Q the Ianguagé\/[jq, is
B-regular. The base cage= 0 follows from observation:

a1 +as+ -+ aq if ¢ # ¢ and(q,a,¢') €§d — Fie{l,...,l},a=uq;
M(?,q,: etart+as+---+aqifg=q¢ and(q,a,¢) €d < Fie{l,...,l},a=q
otherwise

The inductive case fat > 0 follows from observation:
[ . | k—1\B k—1 k—1
My, = Mq,k -(MM ) 'Mk,q’ +Mq7q,

SinceM, = M,, we conclude thaf(.A) is described by a star-freeB-regular
expression. |

Lemma 6. All languages described by a star-fred3-regular expression is rec-
ognized by a non-deterministic finitary Blichi automaton.

Proof. To prove this result, we will describe automata reading itgfisequences
of finite words, and corresponding acceptance conditioegAl= (Q, X, §, Qo, F')
a finitary Buchi automaton. While reading an infinite seqeanof finite words,
A will accept if the following conditions are satisfied: @9y € Qo, g1, ¢, ... €
F,Vi € N, we havey; — ¢;1; and (2)(Jun|)n is bounded.

We show that for allM star-freeB-regular expression, there exists a non-
deterministic finitary Biichi automaton acceptiff”, language of infinite se-
quence of finite words, as described above. We proceed bygtindwon /.

— The case$), c anda € X are easy.

— From M to M B, the same automaton fdt works for M2 as well, since
B is idempotent.

— From My, M5 to M7 + Ms: this involves non-determinism. The automaton
guesses for each finite word which word is used. Let= (Q1, X, 61, QY, F1)
and Ay = (Q2,X,82,Q9, Fy) two non-deterministic finitary Biichi au-
tomata accepting/® and M2, respectively. Fok € {1,2} andT C Qy,
we defineFinal(T) = {¢ € F, | 3¢ € T,3u € ¥*,q %4, ¢'} to be the
state of final states reachable from a statd”inWe denote byFinal® the
k-th iteration ofFinal, e.g.,Final®(T") = Final(Final(Final(T))).

We define a finitary Blchi automaton:

A= ((Qux29) U (Q2x29Y) U 29 x 2%, 5,5,(Q1,Q3), F)
computation states ~ 9uess states
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where

={((Q,Q"),¢,(¢,Final(Q"))) | ¢ € Q} (guess isl)

U {((Q,Q),¢,(¢, Final(Q))) | ¢ € Q"}  (guess i)

U{l(g,7),0 (q 7)) (g,0,q") € 01 Ud2}
U{((q1,7),e,({a1}, 7)) | 1 € F1}

U {((g2,T),e,(T,{g2})) | g2 € F2}

There are two kinds of states. Computation stateg@arg) whereq € @,
andT C Q- (or symmetricallyg € Q2 andT C @)1), whereq is the current
state of the automaton that has been decided to use for thentdinite
word, andT’ is the set of final states of the other automaton that woulé hav
been reachable if one had chosen this automaton. Guess atafé), Q)’),
where( is the set of states fromdl; one can start reading the next word,
and similarly forQ'.

We now prove the correctness of our construction. Considenfanite se-
guencew accepted by4, and consider an accepting runThere are three
cases:

1. either all guesses ate

2. or all guesses att

3. else, both guesses happen.

The first two cases are symmetric. In the first, we can easéytlsaw is
accepted byd,, and similarly in the second is accepted by,.

We now consider the third case. There are two symmetric selscaither
the first guess i$, then

p=(QY QY - (a1, Final(@9))...,
with ¢9 € QV; or symmetrically the first guess 25 then
p=(QY,Q3) - (3 Final(@Y)) ...,
with ¢§ € Q3. We consider only the first subcase. Then
p=(Q1,Q2) (¢}, Final(Q3)) .. (a1, Final(Q3)) - ({g1 }, Final(Q3)) ..,

whereu is a finite prefix ofw* such thay) “% ¢} in A; andq] € F;. We
denote bypg the finite prefix ofp up to (¢i, Final(QY)). Let k be the first
time when guess i2: then

p=rpo-p1-pre—1 - ({ar}, Final®(Q3)) - (48, Final({ax})) ...,

whereq € Final®*(QY) and forl <i < k — 1, we have
pi = ({¢i}, Final'(Q9)) - (qi, Final™(Q3)) ... (¢{"", Final ™ (Q3)),
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andu; is a finite word such that, % ¢“*1in Ay, o' € Fy anduguy . .. up_y
finite prefix ofw®. Sinceq) € Final®(QY), there exists;o,vl, o, U fi-

vo

nite words andy3, . . . ,q§ € F; such thatgd = 2 SN LN q2 Then
we can repeat this by induction, constructiage M andv € MP, such
that for alli € N, we havew; € {u;,v;}.

Conversely, letuw € MP andv € MP, andw such thatvi € N,w; €
{u;,v;}. Using. A; whenw,; = u; and.A, otherwise, one can construct an
accepting run forw and.A. HenceA recognizeg M, + M)?

— From My, M, to My - Ms: the automaton keeps tracks of pending states
while reading the other word. Let; = (Q1,X,61,Q%, F}) and Ay =
(Q2, %, 52, QY, F») two non-deterministic finitary Buchi automata accept-
ing M andMP, respectively. Letd = ((Q1 x F2)U(Q2 x 1), X, 6, QY x
Qg,Fl X Fg), where

={((q, ):0.(d". ) | (¢:0,d') € &1, f € F>}

{((q f)> 7( ))|(Q707q/)€527f€F1}
U {((q1, f), 7(f,Q1)) | q1 € Fi}

U{((q2, f),&,(f,q2)) | g2 € Fa}

Intuitively, the transition relation is as follows: eithene is reading using
A or As. In both cases, the automaton remembers the last final sty
while reading in the other automaton in order to restoredtaite for the next
word. Letw accepted by4, an accepting run is as follows:

wo ( i+1 z—l—l) o

(a7,03) =% (a1.a3) =5 ... (al, db) == (T, b

where (¢?,4¢9) € QY x @Y, for all i > 1, we have(qi, ) € Fi x Fy
and (Jw,|)» bounded. From the construction, for ale N, we havew; =

0.,0. .1, .1 ki ki
wp v uy vy v, where

0 wl ki

g = q1(0) =+ ¢i(1) = qi(2)... == qi(ki +1) = gi*' In A

. . U? . vz.l . ’Ufi ; .
g5 = 45(0) = g3(1) =+ ¢5(2) ... == g3(ki +1) = 5" in Ay
the statesq’ (k), ¢ (k)) belong toF; x Fy. We defineu; = ulu! . .. u* and
v; = vdv! ... v¥. From the above follows that andv are accepted byl,
andA2, respectively. Them € (M; - M)B

Conversely, a sequence (0 - M»)? is clearly accepted byl. Hence A
recognize§ M, - My)?

We now prove that all star-free B-regular expressions are recognized by a
non-deterministic finitary Blchi automaton. Sinbé'B are closed under finite
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union (Theorerhl8), we only need to consider expressioig~, whereL C X*

is regular language of finite words add star-freeB-regular expression. The
constructions above ensure that there exists = (Qur, X, 6a, Q. Fur), @
non-deterministic finitary Biichi automaton that recogsittee languag@/”? of
infinite sequences. Let, = (Qr, X,dr,QY, F1) be a finite automaton over
finite words that recognizek. We construct a non-deterministic finitary Blchi
automaton as followsA = (Qr U Qur, X, 6, QY% , Far) whered = 7, U 6y U
{(g,e,4") | g € Fr,q' € QY,}. In other words, firstd simulatesAy,, and when
a finite prefix is recognized by, then.A turns to.4,; and simulates it.

We argue thatd recognized. - M“. Letw accepted by4, andu the finite
prefix read byA;, w = u - v. Fromwv infinite word, we definev an infinite
sequence of finite words by sequencingach time a final state (i.e., froft,)
is visited. The sequenagis accepted byd,,, hence belongs td/”, and since
v¥ = v, we havev € (MP)* = M¥, and finallyw € L - M*. Conversely, let
w=u-v*, whereu € L andv € MPB. Letq € Q%,q e Iy, such thatyy — q.
Letqd € Qo,q1,q2, ... € Fr, such that for ali € N we haveg; —» Gi+1- The
key, yet simple observation is that for all star-frBeregular expressiond/ and
for all v € M we have(|v,|),, is bounded. This is straightforward by induction
on M. Hence, from positiofu|, the setFy, is visited infinitely many times, and
there is a bound between two consecutive visits. Thisaccepted byd. 1

The following theorem follows from Lemnid 5 and Lempia 6.

Theorem 9. NFB has exactly the same expressive power as starffeéeegular
expressions.

6 Decision Problems

In this section we consider the complexity of the decisiombfgms for finitary
languages. We present the results for finitary Blichi autarfmatsimplicity, but
the arguments for finitary parity and Streett automata andasi

For the proofs of the results of this section we need to censid-Bichi
conditions (dual of Biichi conditions): given a g€t it requires that elements
that appear infinitely often are outsidé in other words, elements iR appear
only finitely often. It maybe noted that co-Biichi and finitaxy-Blchi condi-
tions coincide. We will also consider co-finitary Bilchi cdrmah, that is the
complement of a finitary Blichi condition: given a géto-finitary Biichi con-
dition for F' is the complement dfinBiichi(F), that isX*\FinBiichi(F).

Lemma?7. Let A = (Q, X, Qo,d Fy, F,.) be an automaton witlh}, and £, are
subsets of). Consider the acceptance conditign as the conjunction of the
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finitary Bulichi condition with sef}, and the co-finitary Blichi condition with set
F,; and the acceptance conditi@h, as the conjunction of Blichi condition with
setFy, and the co-Buchi condition with sét. The following assertions hold:

1. The answer of the emptiness problenddior @ is Yes iff there is a cycle
Cin AsuchthatC N F, # pandC N F, = 0.

2. The answer of the emptiness problemdgrand &, coincide.

3. The emptiness problem f@y is decidable iINLOGSPACE.

Proof. We prove the results as follows.

1. We first prove parts 1. and 2. Without loss of generality ssuae that for
all ¢ € ), there exists a path from an initial staiec @ to ¢ (otherwise we
can deletey). If there is a cycleC with C N F, # () andC N F, = (), then
consider a finite word, to reachC, and a wordv that execut&”. The word
u-v¥ IS a witness thayl with ¢, as well aspb, is non-empty. Conversely, the
condition®, is a Rabin 1-pair condition, and by existence of memoryless
strategies for Rabin conditioh [EJ88], it follows thatdfis non-empty for
&5, then there must be a cydiein A such thaC' N F, # ) andC N F,. = (.
The condition®; can be specified as a finitary parity condition with three
priorities (1, 2, 3) by assigning priority 1 to states ., 2 to states inf;, \ F¢,
and3 to the rest. By existence of memoryless strategies for finiarity
objectives [[CHHOD], it follows that if4 is non-empty for®,, then there
must be a cycl€' in A such thatC' N F, # () andC N F, = (). The result
follows.

2. The result follows from the emptiness problem of non-aheieistic Rabin
1-pair automata. The basic idea of the proof is as follows:shwew that
the witness cycle’ can be guessed and verified in logarithmic space. The
guesses are as follows: (a) first the initial prefix of the gatf' is guessed
by guessing one state (the next state) at a time (hence oehgoess is
made at a time which is logarithmic space), (b) then theistpdtate of the
cycleC is guessed and stored (again in logarithmic space), and€acytcle
is guessed by again considering one state at a time and atstgzlit is
verified that the state generated isin\ F; (d) one state in the cycle such
that the state is irF}, is guessed and verified; and (e) finally it is checked
that the cycle is completed by visiting the starting statéhefcycle. Hence
at every step only constantly many guesses are made, stodedesdfied.
The NLOGSPACE upper bound follows.

The desired result follows. |
Theorem 10 (Decision problems)The following assertions hold:
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1. (Emptiness)Given a finitary Biichi automatonl, whetherL(A) = 0 is
NLOGSPACE-complete and can be decided in linear time.

2. (Universality).Given a finitary Buchi automatod whetherL(A) = X% is
PSPACE-complete.

3. (Language inclusion)Given two finitary Biichi automatd and 3, whether
L(A) C L(B) is PSPACE-complete.

Proof. We show the three parts of the proof.

1. TheNLOGSPACE upper bound follows from Lemnid 7: we consider the
special case where the s&t is empty. TheNLOGSPACE lower bound
follows from NLOGSPACE-hardness of reachability problem in a directed
graph: givers andt two vertices, is there a path frosrto t? Given a directed
graph ands, ¢t two vertices, the corresponding automaton kass initial
vertex,t as unique final vertex, and we add a self-loop aveFhen there
is a path froms to ¢ if and only if the language accepted by this finitary
Biichi automaton is non-empty. This concludes sinc&E@GSPACE =
NLOGSPACE.

2. ThePSPACE upper bound will follow from the following®SPACE upper
bound for language inclusion, item 3. TR&PACE lower bound follows
from the PSPACE lower bound for finite automata. The universality prob-
lem for automata over finite words BRSPACE-hard even when all the ac-
cepting states are absorbing [M$72]. For such automatdioiterwords the
acceptance is the same as for finitary Biichi condition. Theltréollows.

3. ThePSPACE lower bound follows from item 2. by theSPACE-hardness
for universality. We now present tiRSPACE upper bound. Letl = (Q4, X, Q4,0,04, Fa)
andB = (Qg, X, @B, 0B, Fp) be two finitary Blichi automata. Let x
B=(Qax29 % (Qa0,QB0), 0, Fy, F.) be an automaton where for all
s€QaSCQpando € X,

8((s,9),0) = | J{(s,4) | ' € 8(s,0),4' € dp(g,0)}
qeSs

andF, = {(s,5) | s € Fa}andF, = {(s,5) | SN Fp = (}. In other
words A x B is synchronous product ofl and the power set (subset con-
struction) of B. The acceptance condition is the conjunction of the finitary
Buchi condition with sef;, and co-finitary Blichi condition with séf..
We claim thatC(A x B) = 0 iff £(A) C L(B).
AssumeL (A x B) # (), then there is a cycl€’ such thaiC' N F; # () and
C N F. = (. The lasso word that executes the finite path to reddmind
then execute it forever is a witness word that is accepted byt not bys.
Hencel(A) Z L(B).
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AssumeL(A x B) = (), then every words accepted byis not accepted by
B, hence accepted Wy. ThusZ(A) C L(B).

Since the construction is exponential and the non-emipesblem can be
decided ilNLOGSPACE (LemmdY), we obtain APSPACE = PSPACE
upper bound.

The result follows. [ |

AcknowledgementsWe thank Thomas Colcombet for explaining to us results
related tow B-automata.
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