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Abstract. The class ofω-regular languages provides a robust specification lan-
guage in verification. Everyω-regular condition can be decomposed into a safety
part and a liveness part. The liveness part ensures that something good hap-
pens “eventually”. Finitary liveness was proposed by Alur and Henzinger as
a stronger formulation of liveness [AH98]. It requires thatthere exists an un-
known, fixed boundb such that something good happens withinb transitions. In
this work we consider automata with finitary acceptance conditions defined by
finitary Büchi, parity and Streett languages. We give their topological complex-
ity of acceptance conditions, and present a regular-expression characterization
of the languages they express. We provide a classification offinitary and classi-
cal automata with respect to the expressive power, and give optimal algorithms
for classical decisions questions on finitary automata. We (a) show that the fini-
tary languages areΣ2-complete; (b) present a complete picture of the expressive
power of various classes of automata with finitary and infinitary acceptance con-
ditions; (c) show that the languages defined by finitary parity automata exactly
characterize the star-free fragment ofωB-regular languages; and (d) show that
emptiness isNLOGSPACE-complete and universality as well as language in-
clusion arePSPACE-complete for finitary automata.

1 Introduction

Classicalω-regular languages: strengths and weakness.The class ofω-regular
languages provides a robust language for specification for solving control and
verification problems (see,e.g, [PR89,RW87]). Everyω-regular specification
can be decomposed into a safety part and a liveness part [AS85]. The safety
part ensures that the component will not do anything “bad” (such as violate an
invariant) within any finite number of transitions. The liveness part ensures that
the component will do something “good” (such as proceed, or respond, or ter-
minate) in the long-run. Liveness can be violated only in thelimit, by infinite se-
quences of transitions, as no bound is stipulated on when the“good” thing must
happen. This infinitary, classical formulation of livenesshas both strengths and
weaknesses. A main strength is robustness, in particular, independence from the
chosen granularity of transitions. Another main strength is simplicity, allowing
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liveness to serve as an abstraction for complicated safety conditions. For exam-
ple, a component may always respond in a number of transitions that depends,
in some complicated manner, on the exact size of the stimulus. Yet for correct-
ness, we may be interested only that the component will respond “eventually”.
However, these strengths also point to a weakness of the classical definition of
liveness: it can be satisfied by components that in practice are quite unsatisfac-
tory because no bound can be put on their response time.

Stronger notion of liveness.For the weakness of the infinitary formulation of
liveness, alternative and stronger formulations of liveness have been proposed.
One of these isfinitary liveness [AH98]: finitary liveness does not insist on a
response within a known boundb (i.e, every stimulus is followed by a response
within b transitions), but on response within some unknown bound (i.e, there
existsb such that every stimulus is followed by a response withinb transitions).
Note that in the finitary case, the boundb may be arbitrarily large, but the re-
sponse time must not grow forever from one stimulus to the next. In this way,
finitary liveness still maintains the robustness (independence of step granularity)
and simplicity (abstraction of complicated safety) of traditional liveness, while
removing unsatisfactory implementations.

Finitary parity and Streett conditions. The classical infinitary notion of fair-
ness is given by the Streett condition: it consists of a set ofd pairs of requests
and corresponding responses (grants) and requires that every request that ap-
pears infinitely often must be responded infinitely often. Its finitary counterpart,
the finitary Streett condition requires that there is a boundb such that in the
limit every request is responded withinb steps. The classical infinitary parity
condition consists of a priority function and requires thatthe minimum priority
visited infinitely often is even. Its finitary counterpart, the finitary parity condi-
tion requires that there is a boundb such that in the limit after every odd priority
a lower even priority is visited withinb steps.

Results on classical automata.There are several robust results on the lan-
guages expressible by automata with infinitary Büchi, parity and Streett condi-
tions, as follows: (a)Topological complexity:it is known that Büchi languages
areΠ2-complete, whereas parity and Streett languages lie in the boolean closure
of Σ2 andΠ2 [MP92]; (b) Automata expressive power:non-deterministic au-
tomata with Büchi conditions have the same expressive poweras deterministic
and non-deterministic parity and Streett automata [Cho74,Saf92]; and (c)Regular-
expression characterization:the class of languages expressed by deterministic
parity is exactly defined byω-regular expressions (see the handbook [Tho97]
for details).
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Our results. For finitary Büchi, parity and Streett languages, topological, automata-
theoretic, regular-expression and decision problems studies were all missing. In
this work we present results in the four directions, as follows:

1. Topological complexity.We show that finitary Büchi, parity and Streett con-
ditions areΣ2-complete.

2. Automata expressive power.We show that finitary automata are incompara-
ble in expressive power with classical automata. As in the infinitray setting,
we show that non-deterministic automata with finitary Büchi, parity and
Streett conditions have the same expressive power, as well as deterministic
parity and Streett automata, which are strictly more expressive than deter-
ministic finitary Büchi automata. However, in contrast to the infinitary case,
for finitary parity condition, non-deterministic automataare strictly more
expressive than the deterministic counterpart. As a by-product we derive
boolean closure properties for finitary automata.

3. Regular-expression characterization.We consider the characterization of
finitary automata through an extension ofω-regular languages defined as
ωB-regular languages by [BC06]. We show that languages definedby non-
deterministic finitary Büchi automata are exactly the star-free fragment of
ωB-regular languages.

4. Decision problems.We show that emptiness isNLOGSPACE-complete
and universality as well as language inclusion arePSPACE-complete for
finitary automata.

Related works.The notion of finitary liveness was proposed and studied in [AH98],
and games with finitary objectives was studied in [CHH09]. A generalization of
ω-regular languages asωB-regular languages was introduced in [BC06] and
variants have been studied in [BT09] (also see [Boj10] for a survey); a topolog-
ical characterization has been given in [HST10]. Our work along with topolog-
ical and automata-theoretic studies of finitary languages,explores the relation
between finitary languages andωB-regular expressions, rather than identify-
ing a subclass ofωB-regular expressions. We identify the exact subclass of
ωB-regular expressions that corresponds to non-deterministic finitary parity au-
tomata.

2 Definitions

2.1 Languages topological complexity

Let Σ be a finite set, called the alphabet. A wordw is a sequence of letters,
which can be either finite or infinite. A language is a set of words:L ⊆ Σ∗ is a
language over finite words andL ⊆ Σω over infinite words.
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Cantor topology and Borel hierarchy. Cantor topology onΣω is given by
opensets: a language is open if it can be described asW · Σω whereW ⊆
Σ∗. Let Σ1 denote the open sets andΠ1 denote the closed sets (a language is
closed if its complement is open): they form the first level ofthe Borel hierarchy.
Inductively, we define:Σi+1 is obtained as countable union ofΠi sets; andΠi+1

is obtained as countable intersection ofΣi sets. The higher a language is in the
Borel hierarchy, the higher its topological complexity.

Since the above classes are closed under continuous preimage, we can define
the notion of Wadge reduction [Wad84]:L reduces toL′, denoted byL � L′,
if there exists a continuous functionf : Σω → Σω suchL = f−(L′), where
f−(L′) is the preimage ofL′ by f . A language is hard with respect to a class
if all languages of this class reduce to it. If it additionally belongs to this class,
then it is complete.

ForL ⊆ Σω, let pref(L) ⊆ Σ∗ be the set of finite prefixes of words inL.
The following property holds:

Proposition 1. For all languagesL ⊆ Σω, L is closed if and only if, for all
infinite wordsw, if all finite prefixes ofw are inpref(L), thenw ∈ L.

Classical liveness conditions.We now consider three classes of languages that
are widespread in verification and specification. They defineliveness properties,
i.e, intuitively say that something good will happen “eventually”. For an infinite
wordw, let Inf(w) ⊆ Σ denote the set of letters that appear infinitely often in
w. The class of Büchi languages is defined as follows, givenF ⊆ Σ:

Büchi(F ) = {w | Inf(w) ∩ F 6= ∅}

i.e, the Büchi condition requires that some letter inF appears infinitely often.
The class of parity languages is defined as follows, givenp : Σ → N a priority
function that maps letters to integers (representing priorities):

Parity(p) = {w | min(p(Inf(w))) is even}

i.e, the parity condition requires that the lowest priority theappears infinitely of-
ten is even. The class of Streett languages is defined as follows, given(R,G) =
(Ri, Gi)1≤i≤d, whereRi, Gi ⊆ Σ are request-grant pairs:

Streett(R,G) = {w | ∀i, 1 ≤ i ≤ d, Inf(w) ∩Ri 6= ∅ ⇒ Inf(w) ∩Gi 6= ∅}

i.e, the Streett condition requires that for all requestsRi, if it appears infinitely
often, then the corresponding grantGi also appears infinitely often.

The following theorem presents the topological complexityof the classical
languages:
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Theorem 1 (Topological complexity of classical languages [MP92]).
– For all ∅ ⊂ F ⊂ Σ, the languageBüchi(F ) is Π2-complete.
– The parity and Streett languages lie in the boolean closure of Σ2 andΠ2.

2.2 Finitary languages

The finitary parity and Streett languages have been defined in[CHH09]. We re-
call their definitions, and also specialize them to finitary Büchi languages. Let
(R,G) = (Ri, Gi)1≤i≤d, whereRi, Gi ⊆ Σ, the definition forFinStreett(R,G)
uses distance sequence as follows:

distjk(w, (R,G)) =

{

0 wk /∈ Rj

inf{k′ − k | k′ ≥ k,wk′ ∈ Gj} wk ∈ Rj

i.e, given a positionk whereRj is requested,distjk(w, (R,G)) is the time steps
(number of transitions) between the requestRj and the corresponding grantGj .
Note thatinf(∅) = ∞. Thendistk(w, (R,G)) = max{distjk(w, p) | 1 ≤ j ≤
d} and:

FinStreett(R,G) = {w | lim sup
k

distk(w, (R,G)) < ∞}

i.e, the finitary Streett condition requires the supremum limitof the distance
sequence to be bounded.

Since parity languages can be considered as a particular case of Streett lan-
guages, whereG1 ⊆ R1 ⊆ G2 ⊆ R2 . . ., the latter allows to defineFinParity(p).
The same applies to finitary Büchi languages, which is a particular case of fini-
tary parity languages where the letters from the setF have priority0 and others
have priority1. We get the following definitions. Letp : Σ → N a priority
function, we define:

distk(w, p) = inf{k′ − k | k′ ≥ k, p(wk′) is even andp(wk′) ≤ p(wk)}

i.e, given a positionk wherep(wk) is odd,distk(w, p) is the time steps between
the odd priorityp(wk) and a lower even priority. ThenFinParity(p) = {w |
lim supk distk(w, p) < ∞}. We define similarly the finitary Büchi language:
givenF ⊆ Σ, let:

nextk(w,F ) = inf{k′ − k | k′ ≥ k,wk′ ∈ F}

i.e,nextk(w,F ) is the time steps before visiting a letter inF . ThenFinBüchi(F ) =
{w | lim supk nextk(w,F ) < ∞}.

5



2.3 Automata,ω-regular and finitary languages

Definition 1. An automaton is a tupleA = (Q,Σ,Q0, δ,Acc), whereQ is
a finite set of states,Σ is the finite input alphabet,Q0 ⊆ Q is the set of initial
states,δ ⊆ Q×Σ×Q is the transition relation andAcc ⊆ Qω is the acceptance
condition.

An automaton is deterministic if it has a single initial state and for every
state and letter there is at most one transition. The transition relation of deter-
ministic automata are described by functionsδ : Q×Σ → Q. An automaton is
complete if for every state and letter there is a transition.This is the case when
the transition function istotal.

Runs. A run ρ = q0q1 . . . is a word overQ, whereq0 ∈ Q0. The runρ is
accepting if it is infinite andρ ∈ Acc. We will write p

a
−→ q to denote(p, a, q) ∈

δ. An infinite wordw = w0w1 . . . induces possibly several runs ofA: a word
w induces a runρ = q0q1 . . . if for all n ∈ N, qn

wn−−→ qn+1 . . . . The language
accepted byA, denoted byL(A) ⊆ Σω, is:

L(A) = {w | there exists an accepting runρ induced byw}.

Acceptance conditions.We will consider various acceptance conditions for au-
tomata obtained from the last section by consideringQ as the alphabet. For ex-
ample, givenF ⊆ Q, the languagesBüchi(F ) andFinBüchi(F ) define Büchi
and finitary Büchi acceptance conditions, respectively. Automata with finitary
acceptance conditions are referred as finitary automata; classical automata are
those equipped with infinitary acceptance conditions.

Notation 1 We use a standard notation to denote the set of languages recog-
nized by some class of automata. The first letter is eitherN or D, whereN
stands for “non-deterministic” andD stands for “deterministic”. The last letter
refers to the acceptance condition:B stands for “Büchi”,P stands for “par-
ity” and S stands for “Streett”. The acceptance condition may be prefixed by
F for “finitary”. For example,NP denotes non-deterministic parity automata,
andDFS denotes deterministic finitary Streett automata. We have the following
combination:

{
N
D

}

·

{
F
ε

}

·







B
P
S







We denote byLω the class of languages accepted by deterministic parity au-
tomata. The following theorem summarizes the results of expressive power of
classical automata [Büc62,Saf92,Cho74,GH82]:
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Theorem 2 (Expressive power results for classical automata).

DB ⊂ Lω
.
= NB = DP = NP = DS = NS

3 Topological complexity

In this section we define a finitary operatorUniCloOmg that allows us to de-
scribe finitary Büchi, finitary parity and finitary Streett languages topologically
and to relate them to the classical Büchi, parity and Streettlanguages; we then
give their topological complexity.

Union-closed-omega-regular operator on languages.Given a languageL ⊆
Σω, the languageUniCloOmg(L) ⊆ Σω is theunion of the languagesM that
are subsets ofL, ω-regular andclosed, i.e, UniCloOmg(L) =

⋃
{M | M ⊆

L,M ∈ Π1,M ∈ Lω}.

Proposition 2. For all languagesL ⊆ Σω we haveUniCloOmg(L) ∈ Σ2.

Proof. Since the set of finite automata can be enumerated in sequence, it follows
thatLω is countable. So for all languagesL, the setUniCloOmg(L) is described
as a countable union of closed sets. HenceUniCloOmg(L) ∈ Σ2.

We present apumping lemmafor ω-regular languages that we will use to
prove the topological complexity of finitary languages.

Lemma 1 (A pumping lemma).Let M be anω-regular language. There ex-
ists n0 such that for all wordsw ∈ M , for all positionsj ≥ n0, there exist
j ≤ i1 < i2 ≤ j + n0 such that for allℓ ≥ 0 we havew0w1w2 . . . wi1−1 ·
(wi1wi1+1 . . . wi2−1)

ℓ · wi2wi2+1 . . . ∈ M .

Proof. GivenM is aω-regular language, letA be a complete and deterministic
parity automata that recognizesM , and letn0 be the number of states ofA.
Consider a wordw = w0w1w2 . . . such thatw ∈ M , and letρ = q0q1q2 . . . be
the unique run induced byw in A. Consider a positionj in w such thatj ≥ n0.
Then there existj ≤ i1 < i2 ≤ j + n0 such thatqi1 = qi2 , this must happen as
A hasn0 states. Forℓ ≥ 0, if we consider the wordwℓ = w0w1w2 . . . wi1−1 ·
(wi1wi1+1 . . . wi2−1)

ℓ · wi2wi2+1 . . ., then the unique run induced bywℓ in A
is ρℓ = q0q1q2 . . . qi1−1 · (qi1qi1+1 . . . qi2−1)

ℓ · qi2qi2+1 . . .. Since the parity
condition is independent of finite prefixes and the runρ is accepted byA, it
follows thatρℓ is accepted byA. SinceA recognizesM , we havewℓ ∈ M .

The following lemma shows thatFinStreett(R,G) is obtained by applying
theUniCloOmg operator toStreett(R,G).
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Lemma 2. For all (R,G) = (Ri, Gi)1≤i≤d, whereRi, Gi ⊆ Σ, we have

UniCloOmg(Streett(R,G)) = FinStreett(R,G).

Proof. We present the two directions of the proof.

1. We first show thatUniCloOmg(Streett(R,G)) ⊆ FinStreett(R,G). Let
M ⊆ Streett(R,G) such thatM is closed andω-regular. Letw = w0w1 . . . ∈
M , and assume towards contradiction, thatlim supk distk(w, (R,G)) =
∞. Hence for alln0 ∈ N, there existsn ∈ N such thatn ≥ n0 and
distn(w, (R,G)) ≥ n0. Let n0 ∈ N given by the pumping lemma onM ,
from above givenn0 we obtainj such thatj ≥ n0 anddistj(w, (R,G)) ≥
n0. By the pumping lemma we obtain the witnessj ≤ i1 < i2 ≤ j+n0. Let
u = w0w1 . . . wi1−1, v = wi1wi1+1 . . . wi2−1 andw′ = wi2wi2+1 . . .. Since
w ∈ M , by the pumping lemma for allℓ ≥ 0 we haveuvℓw′ ∈ M . This
entails that all finite prefixes of the infinite worduvω are inpref(M). Since
M is closed, it follows thatuvω ∈ M . Sincedistj(w, (R,G)) ≥ n0 it fol-
lows that there is some requesti in positionj, and there is no corresponding
granti for the nextn0 steps. Hence there is a positionj′ in v such that there
is requesti at j′ and no corresponding grant inv, and thus it follows that
the worduvω 6∈ Streett(R,G). This contradicts thatM ⊆ Streett(R,G).
Hence it follows thatUniCloOmg(Streett(R,G)) ⊆ FinStreett(R,G).

2. We now show the converse:UniCloOmg(Streett(R,G)) ⊇ FinStreett(R,G).
We have:

FinStreett(R,G) = {w | lim sup
k

distk(w, (R,G)) < ∞}

=
⋃

B∈N

{w | lim sup
k

distk(w, (R,G)) ≤ B}

=
⋃

B∈N

⋃

n∈N

{w | ∀k ≥ n,distk(w, (R,G)) ≤ B}

The language{w | ∀k ≥ n,distk(w, (R,G)) ≤ B} is closed,ω-regular,
and included inStreett(R,G). HenceFinStreett(R,G) ⊆ UniCloOmg(Streett(R,G)).

The result follows.

Lemma 2 naturally extends to finitary parity and finitary Büchi languages:

Corollary 1. The following assertions hold:

– For all p : Σ → N, we haveUniCloOmg(Parity(p)) = FinParity(p);
– For all F ⊆ Σ, we haveUniCloOmg(Büchi(F )) = FinBüchi(F ).
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Büchi languages are a special case of parity languages, and parity languages
are in turn a special case of Streett languages. Since distance sequences for par-
ity and Büchi languages have been defined as a special case of Streett languages,
Corollary 1 follows from Lemma 2.

The following lemma states that finitary Büchi languages areΣ2-complete.

Theorem 3 (Topological characterization of finitary languages).The finitary
Büchi, finitary parity and finitary Streett areΣ2-complete.

Proof. We show that if∅ ⊂ F ⊂ Σ, thenFinBüchi(F ) is Σ2-complete. It fol-
lows from Corollary 1 thatFinBüchi(F ) ∈ Σ2. We now show thatFinBüchi(F )
isΣ2-hard. By Theorem 1 we have thatBüchi(F ) isΠ2-complete, henceΣω\Büchi(F )
isΣ2-complete. We present a topological reduction to show thatΣω\Büchi(F ) �
FinBüchi(F )). Let b : Σω → Σω be the stuttering function defined as follows:

w = w0 w1 . . . wn . . .
b(w) = w0 w1w1

︸ ︷︷ ︸

2

. . . wnwn . . . wn
︸ ︷︷ ︸

2n

. . .

The functionb is continuous. We check that the following holds:

Inf(w) ⊆ F iff ∃B ∈ N,∃n ∈ N,∀k ≥ n,nextk(b(w), F ) ≤ B.

Left to right direction: assume that from the positionn of w, letters belong toF .
Then from the position2n−1, letters ofb(w) belong toF , thennextk(b(w), F ) =
0 for k ≥ 2n − 1.
Right to left direction: letB andn be integers such that for allk ≥ n we
havenextk(b(w), F ) ≤ B. Assume2k−1 > B and k ≥ n, then the letter
in position2k − 1 in b(w) is repeated2k−1 times, thusnextk(b(w), F ) is ei-
ther0 or higher than2k−1. The latter is not possible since it must be less than
B. It follows that the letter in positionk in w belongs toF . Hence we get
Σω\Büchi(F ) � FinBüchi(F ), soFinBüchi(F ) is Σ2-complete. From this
we deduce the two other claims as special cases.

4 Expressive power of finitary automata

In this section we consider the finitary automata, and compare their expressive
power to classical automata. We then address the question ofdeterminization.
Deterministic finitary automata enjoy nice properties thatallows to describe lan-
guages they recognize using theUniCloOmg operator. As a by-product we get
boolean closure properties of finitary automata.
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1 0

a

b

ba

Fig. 1.A finitary Büchi automatonA

4.1 Comparison with classical automata

Finitary conditions allow to express bounds requirements:

Example 1 (DFB 6⊆ Lω). Consider the finitary Büchi automaton shown in
Fig. 1, the state labeled 0 being its only final state. Its language isLB =
{(bj0af(0))·(bj1af(1))·(bj2af(2)) . . . | f : N → N, f bounded,∀i ∈ N, ji ∈ N}.
Indeed,0-labeled state is visited while reading the letterb, and the1-labeled
state is visited while reading the lettera. An infinite word is accepted iff the
0-labeled state is visited infinitely often and there is a bound between two con-
secutive visits of the0-labeled state. We can easily see thatLB is notω-regular,
using proof ideas from [BC06]: its complement would beω-regular, so it would
contain ultimately periodic words, which is not the case.

However, finitary automata cannot distinguish between “many b’s” and “only
b’s”:

Example 2 (DB 6⊆ NFB ). Consider the language of infinitely manya’s, i.e,
LI = {w | w has an infinite number ofa}. The languageLI is recognized by
a simple deterministic Büchi automaton. However, we can show that there is
no finitary Büchi automata that recognizesLI . Intuitively, such an automaton
would, while reading the infinite wordw = ab ab2 ab3 ab4 . . . abn . . . ∈ LI ,
have to distinguish between all b’s, otherwise it would accept a word with
only b’s at the end. Assume towards contradiction that thereexistsA a non-
deterministic finitary Büchi automaton withN states recognizingLI . Let us
consider the infinite wordw. Sincew must be accepted byA, there must be an
accepting runρ, represented as follows:

q0
a
−→ p0

b
−→ q1 . . . qn

a
−→ pn

bn+1

−−−→ qn+1 . . .

and
pn−1

b
−→ qn,1

b
−→ qn,2 . . .

b
−→ qn,n−1

b
−→ qn,n = qn . . .

Sinceρ is accepting, there existsB ∈ N, andn ∈ N, such that for allk ≥ n
we havedistk(ρ, p) ≤ B. Let c be the lowest priority infinitely visited inρ. As
ρ is accepting,c is even. The statepk−1 is in position k·(k+1)

2 in ρ. Let k be an

10



integer such that (a)k·(k+1)
2 ≥ n and (b)k ≥ (N + 1) · B. Let us consider the

set of states{qk,1, . . . , qk,k}. Since the distance function is bounded byB from
then-th position, the priorityc appears at least once in each set of consecutively
visited states of sizeB. Sincek·(k+1)

2 ≥ n andqk,1 is the state followingpk−1,
the latter holds fromqk,1. Sincek ≥ (N+1)·B, it appears at leastN+1 times in
{qk,1, . . . , qk,k}. Since there isN states inA, at least one state has been reached
twice. We can thus iterate: the infinite wordw′ = ab ab2 ab3 ab4 . . . bk−1a bω,
and the wordw′ is accepted byA. However,w′ 6∈ LI and hence we have a
contradiction.

We summarize the results in the following theorem.

Theorem 4. The following assertions hold: (a)DB 6⊆ NFB ; (b) DFB 6⊆ NB .

4.2 Deterministic finitary automata

Given a deterministic complete automatonA with accepting conditionAcc, we
will consider the language obtained by usingUniCloOmg(Acc) as acceptance
condition. Treating the automaton as a transducer, we consider the following
function:CA : Σω → Qω which maps an infinite wordw to the unique runρ of
A onw (there is a unique run sinceA is deterministic and complete). Then:

L(A) = {w | CA(w) ∈ Acc} = C−
A(Acc).

We will focus on the following property:C−
A(UniCloOmg(Acc)) = UniCloOmg(C−

A(Acc)),
which follows from the following lemma. Deterministic complete automata, re-
garded as transducers, preserve topology andω-regularity. Hence applying the
finitary operatorUniCloOmg to the input (the languageL) or to the acceptance
conditionAcc is equivalent.

Lemma 3. For all A = (Q,Σ, q0, δ,Acc) deterministic complete automaton,
we have:
1. for all A ⊆ Qω, A is closed⇒ C−

A(A) closed (CA is continuous).
2. for all L ⊆ Σω, L is closed⇒ CA(L) closed (CA is closed).
3. for all A ⊆ Qω, A is ω-regular⇒ C−

A(A) ω-regular.
4. for all L ⊆ Σω, L is ω-regular⇒ CA(L) ω-regular.

Proof. We prove all the cases below.

1. Let A ⊆ Qω such thatA is closed. Letw be such that for alln ∈ N we
havew0 . . . wn ∈ pref(C−

A(A)). We define the runρ = CA(w) and show
that ρ = q0q1 . . . ∈ A. SinceA is closed, we will show for alln ∈ N

11



we haveq0 . . . qn ∈ pref(A). From the hypothesis we havew0 . . . wn−1 ∈
pref(C−

A(A)), and then there exists an infinite wordu such thatCA(w0 . . . wn−1u) ∈

A. Let CA(w0 . . . wn−1u) = q0q
′
1 . . . q

′
n . . ., then we haveq0

w0−→ q′1
w1−→

q′2 · · ·
wn−1
−−−→ q′n · · · . SinceA is deterministic, we getq′i = qi, and hence

q0 . . . qn ∈ pref(A).
2. Let L ⊆ Σω such thatL is closed. Letρ = q0q1 . . . such that for all

n ∈ N we haveq0 . . . qn ∈ pref(CA(L)). Then for alln ∈ N, there ex-

ists a wordw0w1 . . . wn−1 such thatq0
w0−→ q1

w1−→ q2 . . .
wn−1
−−−→ qn, and

w0w1 . . . wn−1 ∈ pref(L). We define by induction onn an infinite nested
sequence of finite wordsw0w1 . . . wn ∈ pref(L). We denote byw the limit
of this nested sequence of finite words. We have thatρ = CA(w). SinceL
is closed,w ∈ L.

3. LetA ⊆ Qω such thatA recognized by a Büchi automatonB = (QB, Q, P0, τ, F ).
We define the Büchi automatonC = (Q ×QB, Σ, {q0} × P0, γ,QB × F ),
where(q1, p1)

σ
−→ (q2, p2) iff q1

σ
−→ q2 in A andp1

q1
−→ p2 in B. We now

show the correctness of our construction. Letw = w0w1 . . . accepted byC,
then there exists an accepting runρ, as follows:

(q0, p0)
w0−→ (q1, p1)

w1−→ (q2, p2) . . . (qn, pn)
wn−−→ (qn+1, pn+1) . . .

where the second component visitsF infinitely often. Hence:

(†)

{

q0
w0−→ q1

w1−→ q2 . . . qn
wn−−→ qn+1 . . . in A

p0
q0
−→ p1

q1
−→ p2 . . . pn

qn
−→ pn+1 . . . in B

Hence from(†), we haveCA(w) = q0q1 · · · ∈ L(B) = A, and it follows
thatw ∈ C−

A(A). Conversely, letw ∈ C−
A(A), then we haveρ = CA(w) =

q0q1 · · · ∈ A = L(B). Then the above statement(†) holds, which entails
thatw is accepted byC. It follows thatC recognizesC−

A(A).
4. LetL ⊆ Σω such thatL is recognized by a Büchi automatonB = (QB, Σ, P0, τ, F ).

We define the Büchi automatonC = (Q × QB, Q, {q0} × P0, γ,Q × F ),
where(q, p1)

q
−→ (q′, p2) iff there existsσ ∈ Σ, such thatq

σ
−→ q′ in A and

p1
σ
−→ p2 in B. A proof similar to above show thatC recognizesCA(L).

The desired result follows.

Theorem 5. For any deterministic complete automatonA = (Q,Σ, q0, δ,Acc)
recognizing a languageL, the finitary restriction of this automatonUniCloOmg(A) =
(Q,Σ, q0, δ,UniCloOmg(Acc)) recognizesUniCloOmg(L).

Proof. A wordw is accepted byUniCloOmg(A) iff w ∈ C−
A(UniCloOmg(Acc)) =

UniCloOmg(C−
A(Acc)) = UniCloOmg(L).
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Theorem 5 allows to extend all known results on deterministic classes to
finitary deterministic classes: as a corollary, we haveDFB ⊂ DFP andDFP =
DFS .

We now show that non-deterministic finitary parity automataare more ex-
pressive than deterministic finitary parity automata. However, for every lan-
guageL ∈ Lω there existsA ∈ DP such thatA recognizesL, and by The-
orem 5 the deterministic finitary parity automatonUniCloOmg(A) recognizes
UniCloOmg(L).

Corollary 2. For every languageL ∈ Lω there is a deterministic finitary parity
automataA such thatL(A) = UniCloOmg(L).

Example 3 (DFP ⊂ NFP ). As for Example 1 we consider the languagesL1 =
{(aj0bf(0)) ·(aj1bf(1)) ·(aj2bf(2)) . . . | f : N → N, f bounded,∀i ∈ N, ji ∈ N}
andL2 = {(af(0)bj0) · (af(1)bj1) · (af(2)bj2) . . . | f : N → N, f bounded,∀i ∈
N, ji ∈ N}. It follows from Example 1 that bothL1 andL2 belong toDFP ,
hence toNFP . A finitary parity automaton, relying on non-determinism, is eas-
ily built to recognizeL = L1 ∪ L2, henceL ∈ NFP . We can show that we
cannot bypass this non-determinism, as by reading a word we have to decide
well in advance which sequence will be bounded: a’s or b’s,i.e, L /∈ DFP . To
prove it, we interleave words of the form(a∗ · b∗)∗ · aω and(a∗ · b∗)∗ · bω, and
use a pumping argument to reach a contradiction. Assume towards contradiction
thatL ∈ DFP , and letA be a deterministic complete finitary parity automaton
with N states that recognizesL. Let q0 be the starting state. Sinceaω belongs to

L, its unique run onA is accepting, and can be decomposed as follows:q0
an0

−−→

s0
ap0
−−→ s0

ap0
−−→ . . . wheres0 is the lowest priority visited infinitely often while

readingaω. Then,an0bω belongs to thisL, its unique run onA is accepting,

and has the following shape:q0
an0

−−→ s0
bn

′

0

−−→ t0
bp

′

0

−−→ t0
bp

′

0

−−→ . . . wheret0 is
the lowest priority visited infinitely often while readingan0bω. Repeating this
construction and by induction we have, as shown in Fig 2: where sk is the low-

q0

s0

t0

s1
an0

ap0

bn
′

0

bp
′

0

an1

ap1

tk−1

sk

tk

ank

bp
′

k−1

apk

bn
′

k

bp
′

k

Fig. 2. Inductive construction showing thatL /∈ DFP .
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est priority visited infinitely often while readingan0bn
′

0 . . . ankaω andtk is the
lowest priority visited infinitely often while readingan0bn

′

0 . . . ankbn
′

kbω. There
must bei < j, such thatti = tj . Let u = an0bn

′

0 . . . bn
′

i andv = bn
′

i+1 . . . bn
′

j ,
we have:

q0
u
−→ ti

ani+1

−−−→ si+1
v
−→ tj = ti

Consider the wordsw = u · (ani+1 · v)ω and

w∗ = u · (bp
′

iani+piv) · (b2p
′

iani+2piv) . . . (bkp
′

iani+kpiv) . . .

w must be accepted byA since it belongs toL. Hencew∗ is accepted as well,
but does not belong toL. We have a contradiction, and the result follows.

Theorem 6. We haveDFP ⊂ NFP .

Observe that Theorem 5 does not hold for non-deterministic automata, since
we haveDP = NP butDFP ⊂ NFP .

4.3 Non-deterministic finitary automata

We can show that non-deterministic finitary Streett automata can be reduced to
non-deterministic finitary Büchi automata, and this would complete the picture
of expressive power comparison. We first show that non-deterministic finitary
Büchi automata are closed under intersection, and use it to show Theorem 7.

Lemma 4. NFB is closed under intersection.

Proof. Let A1 = (Q1, Σ, δ1, Q
1
0, F1) andA2 = (Q2, Σ, δ2, Q

2
0, F2) be two

non-deterministic finitary Büchi automata. Without loss ofgenerality we assume
both A1 andA2 to be complete. We will define a construction similar to the
synchronous product construction, where a switch between copies will happen
while visiting F1 or F2. The finitary Büchi automaton isA = (Q1 × Q2 ×
{1, 2}, Σ, δ,Q1

0 ×Q2
0 × {1}, F1 ×Q2 × {2} ∪Q1 × F2 × {1}). We define the

transition relationδ below:

δ = {((q1, q2, k), σ, (q
′
1, q

′
2, k)) | q

′
1 /∈ F1, q

′
2 /∈ F2, (q1, σ, q

′
1) ∈ δ1, (q2, σ, q

′
2) ∈ δ2, k ∈ {1, 2}}

∪ {((q1, q2, 1), σ, (q
′
1, q

′
2, 2)) | q

′
1 ∈ F1, (q1, σ, q

′
1) ∈ δ1, (q2, σ, q

′
2) ∈ δ2}

∪ {((q1, q2, 2), σ, (q
′
1, q

′
2, 1)) | q

′
2 ∈ F2, (q1, σ, q

′
1) ∈ δ1, (q2, σ, q

′
2) ∈ δ2}

Intuitively, the transition functionδ is as follows: the first component mimics
the transition for automataA1, the second component mimics the transition for
A2, and there is a switch for the third component from1 to 2 visiting a state in
F1, and from2 to 1 visiting a state inF2.
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We now prove the correctness of the construction. Consider awordw that is
accepted byA1, and then there exists a boundB1 and a runρ1 in A1 such that
eventually, the number of steps between two visits toF1 in ρ1 is at mostB1; and
similarly, there exists a boundB2 and a runρ2 in A2 such that eventually the
number of steps between two visits toF2 in ρ2 is at mostB2. It follows that in
our construction there is a runρ (that mimics the runsρ1 andρ2) in A such that
eventually withinmax{B1, B2} steps a state inF1×Q2×{2}∪Q1×F2×{1}
is visited inρ. Hencew is accepted byA. Conversely, consider a wordw that
is accepted byA, and letρ be a run andB be the bound such that eventually
between two visits to the accepting states inρ is separated by at mostB steps.
Let ρ1 andρ2 be the decomposition of the runρ in A1 andA2, respectively. It
follows that both inA1 andA2 the respective final states are eventually visited
within at most2 ·B steps inρ1 andρ2, respectively. It follows thatw is accepted
by bothA1 andA2. Hence we haveL(A) = L(A1) ∩ L(A2).

Theorem 7. We haveNFB = NFP = NFS .

Proof. We will present a reduction ofNFS to NFB and the result will follow.
Since the Streett condition is a finite conjunction of conditions Inf(w) ∩ Ri 6=
∅ ⇒ Inf(w) ∩ Gi 6= ∅, by Lemma 4 it suffices to handle the special case
whend = 1. Hence we consider a non-deterministic Streett automatonA =
(Q,Σ, δ,Q0, (R,G)) with (R,G) = (R1, G1). Without loss of generality we
assumeA to be complete. We construct a non-deterministic Büchi automaton
A′ = (Q×{1, 2, 3}, Σ, δ′ , Q0 ×{1}, Q×{2}), where the transition relationδ′

is given as follows:

δ′ = {(q, 1), σ, (q′ , j) | (q, σ, q′) ∈ δ, j ∈ {1, 2}}
∪ {(q, 2), σ, (q′ , 2) | q′ /∈ R1, (q, σ, q

′) ∈ δ}
∪ {(q, 2), σ, (q′ , 3) | q′ ∈ R1, (q, σ, q

′) ∈ δ}
∪ {(q, 3), σ, (q′ , 3) | q′ /∈ G1, (q, σ, q

′) ∈ δ}
∪ {(q, 3), σ, (q′ , 2) | q′ ∈ G1, (q, σ, q

′) ∈ δ}

In other words, the state component mimics the transition ofA, and in the sec-
ond component: (a) the automaton can choose to stay in component1, or switch
to 2; (b) there is a switch from2 to 3 upon visiting a state inR1; and (b) there is
a switch from3 to 2 upon visiting a state inG1. Consider a wordw accepted by
A and an accepting runρ in A, and letB be the bound on the distance sequence.
We show thatw is accepted byA′ by constructing an accepting runρ′ in A′. We
consider the following cases:

1. If infinitely many requestsR1 are visited inρ, then inA′ immediately switch
to component2, and then mimic the runρ as a runρ′ in A′. It follows that
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from some pointj on every request is granted withinB steps, and it follows
that after positionj, whenever the second component is3, it becomes2
within B steps. Hencew is accepted byA.

2. If finitely many requestsR1 are visited inρ, then after some pointj, there
are no more requests. The automatonA′ mimics the runρ by staying in the
second component as1 for j steps, and then switches to component2. Then
afterj steps we always have the second component as2, and hence the word
is accepted.

Conversely, consider a wordw accepted byA′ and consider the accepting run
ρ′. We mimic the run inA. To accept the wordw, the runρ′ must switch to the
second component as2, say afterj steps. Then, from some point on whenever
a state with second component3 is visited, within some boundB steps a state
with second component2 is visited. Hence the runρ is accepting inA. Thus the
languages ofA andA′ coincide, and the desired result follows.

Our results are summarized in Corollary 3 and shown in Fig 3.

Corollary 3. We have (a)DFB 6⊆ Lω; (b) DFB ⊂ DFP = DFS ⊂ NFB =
NFP = NFS ; (c) DB 6⊆ NFB ; (d) Lω 6⊆ NFB .

4.4 Closure properties

Theorem 8 (Closure properties).The following closure properties hold:
1. DFP is closed under intersection.
2. DFP is not closed under union.
3. NFP is closed under union and intersection.
4. DFP andNFP are not closed under complementation.

Proof. We prove all the cases below.

1. Intersection closure forDFP follows from Theorem 5 and from the observa-
tion that for allL,L′ ⊆ Σω we haveUniCloOmg(L∩L′) = UniCloOmg(L)∩
UniCloOmg(L′). The observation is proved as follows. LetM ∈ Π1 ∩ Lω

andM ⊆ L ∩L′, thenM ⊆ UniCloOmg(L)∩UniCloOmg(L′), and hence
UniCloOmg(L ∩ L′) ⊆ UniCloOmg(L) ∩ UniCloOmg(L′). Conversely,
let M1 ⊆ UniCloOmg(L) andM2 ⊆ UniCloOmg(L′), thenM1 ∩ M2 ∈
Π1 ∩Lω andM1 ∩M2 ⊆ L∩L′. HenceM1 ∩M2 ⊆ UniCloOmg(L∩L′),
thusUniCloOmg(L) ∩ UniCloOmg(L′) ⊆ UniCloOmg(L ∩ L′).

2. Failure of closure under union forDFP follows from Example 3.
3. Union closure forNFP is easy and relies on non-determinism, while inter-

section closure follows from Lemma 4, sinceNFP = NFB .
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4. Failure of closure under complementation forDFP follows from items
1. and 2., since this closure together with intersection closure would im-
ply union closure. Failure of closure under complementation for NFP fol-
lows from Example 2. Indeed, the languageLF = {a, b}ω \LI = {w |
w has a finite number ofa} lies in NFP ; however, Example 2 shows that
its complement is not expressible by non-deterministic finitary Büchi au-
tomata, hence nor by non-deterministic finitary parity automata.

The result follows.

DFB

DFP = DFS

NFB = NFP = NFS

DB

Lω

Fig. 3. Expressive power classification

5 Regular Expression Characterization

In this section we address the question of giving a syntactical representation of
finitary languages, using a special class of regular expressions.

The class ofωB-regular expressions was introduced in the work of [BC06]
as an extension ofω-regular expressions, as an attempt to express bounds in reg-
ular languages. To defineωB-regular expressions, we need regular expressions
andω-regular expressions.

Regular expressions define regular languages over finite words, and have the
following grammar:

L := ∅ | ε | σ | L · L | L∗ | L+ L; σ ∈ Σ

In the above grammar,· stands for concatenation,∗ for Kleene star and+ for
union. Thenω-regular languages are finite union ofL ·L′ω, whereL andL′ are
regular languages of finite words. The class ofωB-regular languages, as defined
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in [BC06], is described by finite union ofL ·Mω, whereL is a regular language
over finite words andM is aB-regular language over infinite sequences of finite
words. The grammar forB-regular languages is as follows:

M := ∅ | ε | σ | M ·M | M∗ | MB | M +M ; σ ∈ Σ

The semantics of regular languages over infinite sequences of finite words will
assign to aB-regular expressionM , a language in(Σ∗)ω. The infinite sequence
〈u0, u1, . . .〉 will be denoted byu. The semantics is defined by structural induc-
tion as follows.
– ∅ is the empty language,
– ε is the language containing the single sequence(ε, ε, . . . ),
– a is the language containing the single sequence(a, a, . . . ),
– M1 ·M2 is the language{〈u0 · v0, u1 · v1, . . .〉 | u ∈ M1,v ∈ M2},
– M∗ is the language{〈u1 . . . uf(1)−1, uf(1) . . . uf(2)−1, . . .〉 | u ∈ M,f :

N → N},
– MB is defined likeM∗ but we additionally require the valuesf(i+1)−f(i)

to be bounded uniformly ini,
– M1 +M2 is {w | u ∈ M1,v ∈ M2,∀i, wi ∈ {ui, vi}}.

Finally, theω-operator on sequences with nonempty words on infinitely many
coordinates is:〈u0, u1, . . .〉ω = u0u1 . . . . This operation is naturally extended
to languages of sequences by taking theω power of every sequence in the lan-
guage. The class ofωB-regular languages is more expressive thanNFB , and
this is due to the∗-operator. We will consider the following fragment ofωB-
regular languages where we do not use the∗-operator forB-regular expressions
(however, the∗-operator is allowed forL, regular languages over finite words).
We call this fragment the star-free fragment ofωB-regular languages. In the
following two lemmas we show that star-freeωB-regular expressions express
exactlyNFB .

Lemma 5. All languages inNFB can be described by a star-freeωB-regular
expression.

Proof. LetA = (Q,Σ, δ,Q0, F ) be a non-deterministic finitary Büchi automa-
ton. Without loss of generality we assumeQ = {1, . . . , n}. Let Lq,q′ = {u ∈

Σ∗ | q
u
−→ q′} andM≥c

q = {u | (|ui|)i is bounded and∀i, q
ui−→ q}. Then

L(A) =
⋃

q0∈Q0,q∈F

Lq0,q · (Mq)
ω.

For allq, q′ ∈ Q we haveLq,q′ ⊆ Σ∗ is regular. We now show that for allq ∈ Q
the languageMq isB-regular. For all0 ≤ k ≤ n andq, q′ ∈ Q, letMk

q,q′ = {u |
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(|ui|)i is bounded and∀i, q
ui−→ q′ where all intermediate visited states are from{1, . . . , k}}.

We show by induction on0 ≤ k ≤ n that for allq, q′ ∈ Q the languageMk
q,q′ is

B-regular. The base casek = 0 follows from observation:

M0
q,q′ =







a1 + a2 + · · ·+ al if q 6= q′ and(q, a, q′) ∈ δ ⇐⇒ ∃i ∈ {1, . . . , l}, a = ai
ε+ a1 + a2 + · · · + al if q = q′ and(q, a, q′) ∈ δ ⇐⇒ ∃i ∈ {1, . . . , l}, a = ai
∅ otherwise

The inductive case fork > 0 follows from observation:

Mk
q,q′ = Mk−1

q,k · (Mk−1
k,k )B ·Mk−1

k,q′ +Mk−1
q,q′

SinceMn
q,q = Mq, we conclude thatL(A) is described by a star-freeωB-regular

expression.

Lemma 6. All languages described by a star-freeωB-regular expression is rec-
ognized by a non-deterministic finitary Büchi automaton.

Proof. To prove this result, we will describe automata reading infinite sequences
of finite words, and corresponding acceptance conditions. LetA = (Q,Σ, δ,Q0, F )
a finitary Büchi automaton. While reading an infinite sequenceu of finite words,
Awill accept if the following conditions are satisfied: (1)∃q0 ∈ Q0, q1, q2, . . . ∈
F,∀i ∈ N, we haveqi

ui−→ qi+1 and (2)(|un|)n is bounded.
We show that for allM star-freeB-regular expression, there exists a non-

deterministic finitary Büchi automaton acceptingMB , language of infinite se-
quence of finite words, as described above. We proceed by induction onM .

– The cases∅, ε anda ∈ Σ are easy.
– FromM to MB , the same automaton forM works forMB as well, since
B is idempotent.

– FromM1,M2 toM1 +M2: this involves non-determinism. The automaton
guesses for each finite word which word is used. LetA1 = (Q1, Σ, δ1, Q

0
1, F1)

and A2 = (Q2, Σ, δ2, Q
0
2, F2) two non-deterministic finitary Büchi au-

tomata acceptingMB
1 andMB

2 , respectively. Fork ∈ {1, 2} andT ⊆ Qk,
we defineFinal(T ) = {q′ ∈ Fk | ∃q ∈ T,∃u ∈ Σ∗, q

u
−→Ak

q′} to be the
state of final states reachable from a state inT . We denote byFinalk the
k-th iteration ofFinal, e.g.,Final3(T ) = Final(Final(Final(T ))).
We define a finitary Büchi automaton:

A = ((Q1 × 2Q1) ∪ (Q2 × 2Q1)
︸ ︷︷ ︸

computation states

∪ 2Q1 × 2Q2

︸ ︷︷ ︸

guess states

, Σ, δ, (Q0
1, Q

0
2), F )
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where

δ = {((Q,Q′), ε, (q,Final(Q′))) | q ∈ Q} (guess is1)
∪ {((Q,Q′), ε, (q′,Final(Q))) | q′ ∈ Q′} (guess is2)
∪ {((q, T ), σ, (q′, T )) | (q, σ, q′) ∈ δ1 ∪ δ2}
∪ {((q1, T ), ε, ({q1}, T )) | q1 ∈ F1}
∪ {((q2, T ), ε, (T, {q2})) | q2 ∈ F2}

There are two kinds of states. Computation states are(q, T ) whereq ∈ Q1

andT ⊆ Q2 (or symmetricallyq ∈ Q2 andT ⊆ Q1), whereq is the current
state of the automaton that has been decided to use for the current finite
word, andT is the set of final states of the other automaton that would have
been reachable if one had chosen this automaton. Guess states are(Q,Q′),
whereQ is the set of states fromA1 one can start reading the next word,
and similarly forQ′.
We now prove the correctness of our construction. Consider an infinite se-
quencew accepted byA, and consider an accepting runρ. There are three
cases:
1. either all guesses are1;
2. or all guesses are2;
3. else, both guesses happen.

The first two cases are symmetric. In the first, we can easily see thatw is
accepted byA1, and similarly in the secondw is accepted byA2.
We now consider the third case. There are two symmetric subcases: either
the first guess is1, then

ρ = (Q0
1, Q

0
2) · (q

0
1 ,Final(Q

0
2)) . . . ,

with q01 ∈ Q0
1; or symmetrically the first guess is2, then

ρ = (Q0
1, Q

0
2) · (q

0
2 ,Final(Q

0
1)) . . . ,

with q02 ∈ Q0
2. We consider only the first subcase. Then

ρ = (Q0
1, Q

0
2) · (q

0
1 ,Final(Q

0
2)) . . . (q

1
1 ,Final(Q

0
2)) · ({q

1
1},Final(Q

0
2)) . . . ,

whereu0 is a finite prefix ofwω such thatq01
u0−→ q11 in A1 andq11 ∈ F1. We

denote byρ0 the finite prefix ofρ up to (q11 ,Final(Q
0
2)). Let k be the first

time when guess is2: then

ρ = ρ0 · ρ1 · ρk−1 · ({q
k
1},Final

k(Q0
2)) · (q

0
2 ,Final({qk})) . . . ,

whereq02 ∈ Finalk(Q0
2) and for1 ≤ i ≤ k − 1, we have

ρi = ({qi1},Final
i(Q0

2)) · (q
i
1,Final

i+1(Q0
2)) . . . (q

i+1
1 ,Finali+1(Q0

2)),
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andui is a finite word such thatqi1
ui−→ qi+1

1 inA1, q
i+1
1 ∈ F1 andu0u1 . . . uk−1

finite prefix ofwω. Sinceq02 ∈ Finalk(Q0
2), there existsv0, v1, . . . , vk−1 fi-

nite words andq12, . . . , q
k
2 ∈ F2 such that:q02

v0−→ q12
v1−→ . . .

vk−1
−−−→ qk2 . Then

we can repeat this by induction, constructingu ∈ MB
1 andv ∈ MB

2 , such
that for alli ∈ N, we havewi ∈ {ui, vi}.
Conversely, letu ∈ MB

1 andv ∈ MB
2 , andw such that∀i ∈ N, wi ∈

{ui, vi}. UsingA1 whenwi = ui andA2 otherwise, one can construct an
accepting run forw andA. HenceA recognizes(M1 +M2)

B .
– From M1,M2 to M1 · M2: the automaton keeps tracks of pending states

while reading the other word. LetA1 = (Q1, Σ, δ1, Q
0
1, F1) andA2 =

(Q2, Σ, δ2, Q
0
2, F2) two non-deterministic finitary Büchi automata accept-

ingMB
1 andMB

2 , respectively. LetA = ((Q1×F2)∪(Q2×F1), Σ, δ,Q0
1×

Q0
2, F1 × F2), where

δ = {((q, f), σ, (q′, f)) | (q, σ, q′) ∈ δ1, f ∈ F2}
∪ {((q, f), σ, (q′, f)) | (q, σ, q′) ∈ δ2, f ∈ F1}
∪ {((q1, f), ε, (f, q1)) | q1 ∈ F1}
∪ {((q2, f), ε, (f, q2)) | q2 ∈ F2}

Intuitively, the transition relation is as follows: eitherone is reading using
A1 orA2. In both cases, the automaton remembers the last final state visited
while reading in the other automaton in order to restore thisstate for the next
word. Letw accepted byA, an accepting run is as follows:

(q01, q
0
2)

w0−→ (q11, q
1
2)

w1−→ . . . (qi1, q
i
2)

wi−→ (qi+1
1 , qi+1

2 ) . . .

where(q01 , q
0
2) ∈ Q0

1 × Q0
2, for all i ≥ 1, we have(qi1, q

i
2) ∈ F1 × F2

and(|wn|)n bounded. From the construction, for alli ∈ N, we havewi =
u0i · v

0
i · u

1
i · v

1
i . . . u

ki
i · vkii , where

qi1 = qi1(0)
u0
i−→ qi1(1)

u1
i−→ qi1(2) . . .

u
ki
i−−→ qi1(ki + 1) = qi+1

1 in A1

qi2 = qi2(0)
v0i−→ qi2(1)

v1i−→ qi2(2) . . .
v
ki
i−−→ qi2(ki + 1) = qi+1

2 in A2

the states(qi1(k), q
i
2(k)) belong toF1×F2. We defineui = u0i u

1
i . . . u

ki
i and

vi = v0i v
1
i . . . v

ki
i . From the above follows thatu andv are accepted byA1

andA2, respectively. Thenw ∈ (M1 ·M2)
B .

Conversely, a sequence in(M1 · M2)
B is clearly accepted byA. HenceA

recognizes(M1 ·M2)
B .

We now prove that all star-freeωB-regular expressions are recognized by a
non-deterministic finitary Büchi automaton. SinceNFB are closed under finite
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union (Theorem 8), we only need to consider expressionsL·Mω, whereL ⊆ Σ∗

is regular language of finite words andM star-freeB-regular expression. The
constructions above ensure that there existsAM = (QM , Σ, δM , Q0

M , FM ), a
non-deterministic finitary Büchi automaton that recognizes the languageMB of
infinite sequences. LetAL = (QL, Σ, δL, Q

0
L, FL) be a finite automaton over

finite words that recognizesL. We construct a non-deterministic finitary Büchi
automaton as follows:A = (QL ∪ QM , Σ, δ,Q0

L, FM ) whereδ = δL ∪ δM ∪
{(q, ε, q′) | q ∈ FL, q

′ ∈ Q0
M}. In other words, firstA simulatesAL, and when

a finite prefix is recognized byAL, thenA turns toAM and simulates it.
We argue thatA recognizesL ·Mω. Letw accepted byA, andu the finite

prefix read byAL, w = u · v. From v infinite word, we definev an infinite
sequence of finite words by sequencingv each time a final state (i.e., fromFL)
is visited. The sequencev is accepted byAM , hence belongs toMB , and since
v
ω = v, we havev ∈ (MB)ω = Mω, and finallyw ∈ L ·Mω. Conversely, let

w = u · vω, whereu ∈ L andv ∈ MB . Let q0 ∈ Q0
L, q ∈ FL such thatq0

u
−→ q.

Let q′ ∈ Q0, q1, q2, . . . ∈ FL, such that for alli ∈ N we haveqi
vi−→ qi+1. The

key, yet simple observation is that for all star-freeB-regular expressionsM and
for all v ∈ M we have(|vn|)n is bounded. This is straightforward by induction
onM . Hence, from position|u|, the setFL is visited infinitely many times, and
there is a bound between two consecutive visits. Thusw is accepted byA.

The following theorem follows from Lemma 5 and Lemma 6.

Theorem 9. NFB has exactly the same expressive power as star-freeωB-regular
expressions.

6 Decision Problems

In this section we consider the complexity of the decision problems for finitary
languages. We present the results for finitary Büchi automata for simplicity, but
the arguments for finitary parity and Streett automata are similar.

For the proofs of the results of this section we need to consider co-Büchi
conditions (dual of Büchi conditions): given a setF , it requires that elements
that appear infinitely often are outsideF , in other words, elements inF appear
only finitely often. It maybe noted that co-Büchi and finitaryco-Büchi condi-
tions coincide. We will also consider co-finitary Büchi condition, that is the
complement of a finitary Büchi condition: given a setF co-finitary Büchi con-
dition for F is the complement ofFinBüchi(F ), that isΣω\FinBüchi(F ).

Lemma 7. LetA = (Q,Σ,Q0, δ,Fb, Fc) be an automaton withFb andFc are
subsets ofQ. Consider the acceptance conditionΦ1 as the conjunction of the
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finitary Büchi condition with setFb, and the co-finitary Büchi condition with set
Fc; and the acceptance conditionΦ2 as the conjunction of Büchi condition with
setFb, and the co-Büchi condition with setFc. The following assertions hold:

1. The answer of the emptiness problem ofA for Φ2 is Yes iff there is a cycle
C in A such thatC ∩ Fb 6= ∅ andC ∩ Fc = ∅.

2. The answer of the emptiness problem forΦ1 andΦ2 coincide.
3. The emptiness problem forΦ1 is decidable inNLOGSPACE.

Proof. We prove the results as follows.

1. We first prove parts 1. and 2. Without loss of generality we assume that for
all q ∈ Q, there exists a path from an initial stateq0 ∈ Q to q (otherwise we
can deleteq). If there is a cycleC with C ∩ Fb 6= ∅ andC ∩ Fc = ∅, then
consider a finite wordu to reachC, and a wordv that executeC. The word
u ·vω is a witness thatA with Φ1 as well asΦ2 is non-empty. Conversely, the
conditionΦ2 is a Rabin 1-pair condition, and by existence of memoryless
strategies for Rabin condition [EJ88], it follows that ifA is non-empty for
Φ2, then there must be a cycleC in A such thatC∩Fb 6= ∅ andC∩Fc = ∅.
The conditionΦ1 can be specified as a finitary parity condition with three
priorities (1, 2, 3) by assigning priority 1 to states inFc, 2 to states inFb\Fc,
and3 to the rest. By existence of memoryless strategies for finitary parity
objectives [CHH09], it follows that ifA is non-empty forΦ1, then there
must be a cycleC in A such thatC ∩ Fb 6= ∅ andC ∩ Fc = ∅. The result
follows.

2. The result follows from the emptiness problem of non-deterministic Rabin
1-pair automata. The basic idea of the proof is as follows: weshow that
the witness cycleC can be guessed and verified in logarithmic space. The
guesses are as follows: (a) first the initial prefix of the pathto C is guessed
by guessing one state (the next state) at a time (hence only one guess is
made at a time which is logarithmic space), (b) then the starting state of the
cycleC is guessed and stored (again in logarithmic space), and (c) the cycle
is guessed by again considering one state at a time and at eachstep it is
verified that the state generated is inQ \ Fc; (d) one state in the cycle such
that the state is inFb is guessed and verified; and (e) finally it is checked
that the cycle is completed by visiting the starting state ofthe cycle. Hence
at every step only constantly many guesses are made, stored and verified.
TheNLOGSPACE upper bound follows.

The desired result follows.

Theorem 10 (Decision problems).The following assertions hold:
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1. (Emptiness).Given a finitary Büchi automatonA, whetherL(A) = ∅ is
NLOGSPACE-complete and can be decided in linear time.

2. (Universality).Given a finitary Büchi automatonA whetherL(A) = Σω is
PSPACE-complete.

3. (Language inclusion).Given two finitary Büchi automataA andB, whether
L(A) ⊆ L(B) isPSPACE-complete.

Proof. We show the three parts of the proof.

1. TheNLOGSPACE upper bound follows from Lemma 7: we consider the
special case where the setFc is empty. TheNLOGSPACE lower bound
follows fromNLOGSPACE-hardness of reachability problem in a directed
graph: givens andt two vertices, is there a path froms to t? Given a directed
graph ands, t two vertices, the corresponding automaton hass as initial
vertex,t as unique final vertex, and we add a self-loop overt. Then there
is a path froms to t if and only if the language accepted by this finitary
Büchi automaton is non-empty. This concludes since co-NLOGSPACE =
NLOGSPACE.

2. ThePSPACE upper bound will follow from the followingPSPACE upper
bound for language inclusion, item 3. ThePSPACE lower bound follows
from thePSPACE lower bound for finite automata. The universality prob-
lem for automata over finite words isPSPACE-hard even when all the ac-
cepting states are absorbing [MS72]. For such automata overfinite words the
acceptance is the same as for finitary Büchi condition. The result follows.

3. ThePSPACE lower bound follows from item 2. by thePSPACE-hardness
for universality. We now present thePSPACE upper bound. LetA = (QA, Σ,QA,0, δA, FA)
andB = (QB , Σ,QB,0, δB , FB) be two finitary Büchi automata. LetA ×
B = (QA × 2QB , Σ, (QA,0, QB,0), δ, Fb, Fc) be an automaton where for all
s ∈ QA, S ⊆ QB andσ ∈ Σ,

δ((s, S), σ) =
⋃

q∈S

{(s′, q′) | s′ ∈ δA(s, σ), q
′ ∈ δB(q, σ)}

andFb = {(s, S) | s ∈ FA} andFc = {(s, S) | S ∩ FB = ∅}. In other
wordsA × B is synchronous product ofA and the power set (subset con-
struction) ofB. The acceptance condition is the conjunction of the finitary
Büchi condition with setFb and co-finitary Büchi condition with setFc.
We claim thatL(A× B) = ∅ iff L(A) ⊆ L(B).
AssumeL(A × B) 6= ∅, then there is a cycleC such thatC ∩ Fb 6= ∅ and
C ∩ Fc = ∅. The lasso word that executes the finite path to reachC and
then execute it forever is a witness word that is accepted byA but not byB.
HenceL(A) 6⊆ L(B).
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AssumeL(A×B) = ∅, then every words accepted byA is not accepted by
B, hence accepted byB. ThusL(A) ⊆ L(B).
Since the construction is exponential and the non-emptiness problem can be
decided inNLOGSPACE (Lemma 7), we obtain aNPSPACE = PSPACE
upper bound.

The result follows.

Acknowledgements.We thank Thomas Colcombet for explaining to us results
related toωB-automata.
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