Abstract
This paper presents a study on the facial feature detection performance achieved using the Viola-Jones framework. A set of classifiers using two different focuses to gather the training samples is created and tested on four different datasets covering a wide range of possibilities. The results achieved should serve researchers to choose the classifier that better fits their demands.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. on PAMI 19(7), 711–720 (1997)
Brubaker, S.C., Wu, J., Sun, J., Mullin, M.D., Rehg, J.M.: On the design of cascades of boosted ensembles for face detection. International Journal of Computer Vision 77, 65–86 (2008)
Carnegie Mellon University: CMU/VACS image database: Frontal face images (1999), http://vasc.ri.cmu.edu/idb/html/face/frontal_images/index.html (last accesed May 11, 2007)
Castrillón, M., Déniz, O., Hernández, D., Lorenzo, J.: A comparison of face and facial feature detectors based on the violajones general object detection framework. Machine Vision and Applications (2010) (in press)
Hjelmas, E., Low, B.K.: Face detection: A survey. Computer Vision and Image Understanding 83(3), 236–274 (2001), http://dx.doi.org/10.1006/cviu.2001.0921
Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Tech. Rep. 07-49, University of Massachusetts, Amherst (October 2007)
Intel: Intel Open Source Computer Vision Library, v2.1 (April 2010), http://sourceforge.net/projects/opencvlibrary/ (last visited June 2010)
Jain, V., Learned-Miller., E.: Fddb: A benchmark for face detection in unconstrained settings. Tech. rep., University of Massachusetts, Amherst (2010)
Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust face detection using the hausdorff distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90–95. Springer, Heidelberg (2001)
Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: IEEE ICIP 2002, vol. 1, pp. 900–903 (September 2002)
Reimondo, A.: Haar cascades repository (2007), http://alereimondo.no-ip.org/OpenCV/34 (last visited April 2010)
Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(1), 23–38 (1998)
Schneiderman, H., Kanade, T.: A statistical method for 3d object detection applied to faces and cars. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1746–1759 (2000)
Seo, N.: Tutorial: OpenCV haartraining (rapid object detection with a cascade of boosted classifiers based on haar-like features), http://note.sonots.com/SciSoftware/haartraining.html (last visited June 2010)
Sung, K.K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(1), 39–51 (1998)
Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 151–173 (2004)
Yang, M.H., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. Transactions on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002), http://dx.doi.org/10.1109/34.982883
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Castrillón-Santana, M., Hernández-Sosa, D., Lorenzo-Navarro, J. (2011). Viola-Jones Based Detectors: How Much Affects the Training Set?. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds) Pattern Recognition and Image Analysis. IbPRIA 2011. Lecture Notes in Computer Science, vol 6669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21257-4_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-21257-4_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21256-7
Online ISBN: 978-3-642-21257-4
eBook Packages: Computer ScienceComputer Science (R0)