Skip to main content

Characterizing Graphs Using Approximate von Neumann Entropy

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6669))

Included in the following conference series:

Abstract

In this paper we show how to approximate the von Neumann entropy associated with the Laplacian eigenspectrum of graphs and exploit it as a characteristic for the clustering and classification of graphs. We commence from the von Neumann entropy and approximate it by replacing the Shannon entropy by its quadratic counterpart. We then show how the quadratic entropy can be expressed in terms of a series of permutation invariant traces. This leads to a simple approximate form for the entropy in terms of the elements of the adjacency matrix which can be evaluated in quadratic time. We use this approximate expression for the entropy as a unary characteristic for graph clustering. Experiments on real world data illustrate the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  2. Robles-Kelly, A., Hancock, E.R.: A Riemannian Approach to Graph Embedding. Pattern Recognition, 1042–1056 (2007)

    Google Scholar 

  3. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. In: Computer Vison and Pattern Recognition, pp. 731–737 (1997)

    Google Scholar 

  4. Xiao, B., Hancock, E.R., Wilson, R.C.: Graph Characteristic from the Heat Kernel Trace. Pattern Recognition 42, 2589–2606 (2009)

    Article  MATH  Google Scholar 

  5. McKay, B.D.: Spanning Trees in regular Graphs. Eur. J. Combin. 4, 149–160

    Google Scholar 

  6. Passerini, F., Severini, S.: The von Neumann entropy of networks. arXiv:0812.2597 (2008)

    Google Scholar 

  7. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil100). Technical Report, Department of Computer Science, Columbia University (1996)

    Google Scholar 

  8. Torsello, A., Robles-Kelly, A., Hancock, E.R.: Discovering Shape Classes using Tree Edit-Distance and Pairwise Clustering. IJCV 72(3), 259–285 (2007)

    Article  Google Scholar 

  9. Escolano, F., Lozano, M.A., Hancock, E.R., Giorgi, D.: What is the complexity of a network? The heat flow-thermodynamic depth approach. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 286–295. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Escolano, F., Hancock, E.R., Lozano, M.A.: Polytopal graph complexity, matrix permanents, and embedding. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 237–246. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Torsello, A., Hancock, E.R.: Graph Embedding Using Tree Edit-union. Pattern Recognition 40(5), 1393–1405 (2007)

    Article  MATH  Google Scholar 

  12. Suau, P., Escolano, F.: Bayesian Optimization of the Scale Saliency Filter. Image Vision Comput. 26(9), 1207–1218 (2008)

    Article  Google Scholar 

  13. Luo, B., Wilson, R.C., Hancock, E.R.: A Spectral Approach to Learning Structural Variations in Graphs. Pattern Recognition 39(6), 1188–1198 (2006)

    Article  MATH  Google Scholar 

  14. Wilson, R.C., Hancock, E.R., Luo, B.: Pattern Vectors from Algebraic Graph Theory. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1112–1124 (2005)

    Article  Google Scholar 

  15. Ferrer, M., Valveny, E., Serratosa, F., Bunke, H.: Exact median graph computation via graph embedding. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 15–24. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Ferrer, M., Serratosa, F., Valveny, E.: On the relation between the median and the maximum common subgraph of a set of graphs. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 351–360. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Riesen, K., Neuhaus, M., Bunke, H.: Graph embedding in vector spaces by means of prototype selection. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 383–393. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, L., Hancock, E.R., Wilson, R.C. (2011). Characterizing Graphs Using Approximate von Neumann Entropy. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds) Pattern Recognition and Image Analysis. IbPRIA 2011. Lecture Notes in Computer Science, vol 6669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21257-4_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21257-4_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21256-7

  • Online ISBN: 978-3-642-21257-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics