Abstract
In this article, we compare the performance of a new kernel machine with respect to support vector machines (SVM) for prediction of the subnuclear localization of a protein from the primary sequence information. Both machines use the same type of kernel but differ in the criteria to build the classifier. To measure the similarity between protein sequences we employ a k-spectrum kernel to exploit the contextual information around an amino acid and the conserved motif information. We choose Nuc-PLoc benchmark datasets to evaluate both methods. In most subnuclear locations our classifier has better overall accuracy than SVM. Moreover, our method shows less computational cost than SVM.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lei, Z., Dai, Y.: An SVM-based system for predicting protein subnuclear localizations. BMC Bioinformatics 6, 29 (2005)
Villarroya, A., Ríos, M., Oller, J.M.: Discriminant Analysis Algorithm Based on A Distance Function and on Bayesian Decision. Biometrics 51, 908–919 (1995)
Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)
Scholkopf, B., Tsuda, K., Vert, J.P.: Kernel Methods in Computational Biology. MIT Press, Cambridge (2004)
Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Saitoh, S.: Theory of Reproducing Kernels and its Applications. Longman Scientific & Technical, Harlow (1988)
Leslie, C., Eskin, E., Noble, W.: The spectrum kernel: a string kernel for SVM protein classification. In: Altman, R.B., Dunker, A.K., Hunter, L., Lauerdale, K., Klein, T.E. (eds.) Proceedings of the Pacific Symposium on Biocomputing 2002, pp. 564–575. World Scientific, Singapore (2002)
Alpaydin, E.: Introduction to Machine Learning. The MIT Press, Cambridge (2004)
Shen, H., Chou, K.: Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Eng. Des. Sel. 20, 561–567 (2007)
Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M., Estreicher, A., Gasteiger, E., Martin, M., Michoud, K., Donovan, C., Phan, I., et al.: The SWISS-PROT protein knowledgebase and its Supplement TrEMBL. Nucleic Acids Research 31, 365–370 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vegas, E., Reverter, F., Oller, J.M., Elías, J.M. (2011). A Comparison of Spectrum Kernel Machines for Protein Subnuclear Localization. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds) Pattern Recognition and Image Analysis. IbPRIA 2011. Lecture Notes in Computer Science, vol 6669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21257-4_91
Download citation
DOI: https://doi.org/10.1007/978-3-642-21257-4_91
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21256-7
Online ISBN: 978-3-642-21257-4
eBook Packages: Computer ScienceComputer Science (R0)