Skip to main content

A Comparison of Spectrum Kernel Machines for Protein Subnuclear Localization

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6669))

Included in the following conference series:

Abstract

In this article, we compare the performance of a new kernel machine with respect to support vector machines (SVM) for prediction of the subnuclear localization of a protein from the primary sequence information. Both machines use the same type of kernel but differ in the criteria to build the classifier. To measure the similarity between protein sequences we employ a k-spectrum kernel to exploit the contextual information around an amino acid and the conserved motif information. We choose Nuc-PLoc benchmark datasets to evaluate both methods. In most subnuclear locations our classifier has better overall accuracy than SVM. Moreover, our method shows less computational cost than SVM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lei, Z., Dai, Y.: An SVM-based system for predicting protein subnuclear localizations. BMC Bioinformatics 6, 29 (2005)

    Article  Google Scholar 

  2. Villarroya, A., Ríos, M., Oller, J.M.: Discriminant Analysis Algorithm Based on A Distance Function and on Bayesian Decision. Biometrics 51, 908–919 (1995)

    Article  MATH  Google Scholar 

  3. Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  4. Scholkopf, B., Tsuda, K., Vert, J.P.: Kernel Methods in Computational Biology. MIT Press, Cambridge (2004)

    Google Scholar 

  5. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  6. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  7. Saitoh, S.: Theory of Reproducing Kernels and its Applications. Longman Scientific & Technical, Harlow (1988)

    MATH  Google Scholar 

  8. Leslie, C., Eskin, E., Noble, W.: The spectrum kernel: a string kernel for SVM protein classification. In: Altman, R.B., Dunker, A.K., Hunter, L., Lauerdale, K., Klein, T.E. (eds.) Proceedings of the Pacific Symposium on Biocomputing 2002, pp. 564–575. World Scientific, Singapore (2002)

    Google Scholar 

  9. Alpaydin, E.: Introduction to Machine Learning. The MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  10. Shen, H., Chou, K.: Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Eng. Des. Sel. 20, 561–567 (2007)

    Article  Google Scholar 

  11. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M., Estreicher, A., Gasteiger, E., Martin, M., Michoud, K., Donovan, C., Phan, I., et al.: The SWISS-PROT protein knowledgebase and its Supplement TrEMBL. Nucleic Acids Research 31, 365–370 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vegas, E., Reverter, F., Oller, J.M., Elías, J.M. (2011). A Comparison of Spectrum Kernel Machines for Protein Subnuclear Localization. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds) Pattern Recognition and Image Analysis. IbPRIA 2011. Lecture Notes in Computer Science, vol 6669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21257-4_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21257-4_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21256-7

  • Online ISBN: 978-3-642-21257-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics