Abstract
In this paper, we present variants of the Dual-Tree Complex Wavelet Transform (DT-CWT) in order to automatically classify endoscopic images with respect to the Marsh classification. The feature vectors either consist of the means and standard deviations of the subbands from a DT-CWT variant or of the Weibull parameter of these subbands. To reduce the effects of different distances and perspectives toward the mucosa, we enhanced the scale invariance by applying the discrete Fourier transform or the discrete cosine transform across the scale dimension of the feature vector.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gschwandtner, M., Liedlgruber, M., Uhl, A., Vécsei, A.: Experimental Study on the Impact of Endoscope Distortion Correction on Computer-assisted Celiac Disease Diagnosis. In: Proceedings of the 10th International Conference on Information Technology and Applications in Biomedicine (ITAB 2010), Corfu (2010)
Häfner, M., Uhl, A., Vécsei, A., Wimmer, G., Wrba, F.: Complex Wavelet Transform Variants and Scale Invariance in Magnification-Endoscopy Image Classification. In: Proceedings of the 10th International Conference on Information Technology and Applications in Biomedicine (ITAB 2010), Corfu (2010)
Kwitt, R., Uhl, A.: Modeling the Marginal Distributions of Complex Wavelet Coefficient Magnitudes for the Classification of Zoom-Endoscopy Images. In: Proceedings of the IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2007), Rio de Janeiro, Brasil, pp. 1–8 (2007)
Lo, E.H.S., Pickering, M.R., Frater, M.R., Arnold, J.F.: Image segmentation from scale and rotation invariant texture features from the double dyadic dual-tree complex wavelet transform. Image and Vision Computing 29(1), 15–28 (2011)
Manthalkar, R., Biswas, P.K., Chatterji, B.N.: Rotation and scale invariant texture features using discrete wavelet packet transform. Pattern Recognition Letters 24(14), 2455–2462 (2003)
Kingsbury, N.G.: The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters. In: Proceedings of the IEEE Digital Signal Processing Workshop, DSP 1998, Bryce Canyon, Utah, USA, pp. 9–12 (1998)
Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 20, 1145–1159 (1997)
Hegenbart, S., Kwitt, R., Liedlgruber, M., Uhl, A., Vécsei, A.: Impact of Duodenal Image Capturing Techniques and Duodenal Regions on the Performance of Automated Diagnosis of Celiac Disease. In: Proceedings of the 6th International Symposium on Image and Signal Processing and Analysis (ISPA 2009), Salzburg, Austria, pp. 718–723 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Uhl, A., Vécsei, A., Wimmer, G. (2011). Complex Wavelet Transform Variants in a Scale Invariant Classification of Celiac Disease. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds) Pattern Recognition and Image Analysis. IbPRIA 2011. Lecture Notes in Computer Science, vol 6669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21257-4_92
Download citation
DOI: https://doi.org/10.1007/978-3-642-21257-4_92
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21256-7
Online ISBN: 978-3-642-21257-4
eBook Packages: Computer ScienceComputer Science (R0)