Skip to main content

On the Dynamics of Active Categorisation of Different Objects Shape through Tactile Sensors

  • Conference paper
Advances in Artificial Life. Darwin Meets von Neumann (ECAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5777))

Included in the following conference series:

Abstract

Active perception refers to a theoretical approach to the study of perception grounded on the idea that perceiving is a way of acting, rather than a process whereby the brain constructs an internal representation of the world. In this paper, we complement previous studies by illustrating the operational principles of an active categorisation process in which a neuro-controlled anthropomorphic robotic arm, equipped with coarse-grained tactile sensors, is required to perceptually categorise spherical and ellipsoid objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cohen, H., Lefebvre, C. (eds.): Handbook of Categorisation in Cognitive Science. Elsevier, Amsterdam (2005)

    Google Scholar 

  2. Gibson, J.J.: The theory of affordances. In: Shaw, R., Bransford, J. (eds.) Perceiving, Acting and Knowing. Toward an Ecological Psychology, pp. 67–82. Lawrencw Erlbaum Associates, Hillsdale (1977)

    Google Scholar 

  3. Noë, A.: Action in Perception. MIT Press, Cambridge (2004)

    Google Scholar 

  4. Nolfi, S.: Power and limits of reactive agents. Neurocomputing 49, 119–145 (2002)

    Article  MATH  Google Scholar 

  5. Beer, R.: The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior 11, 209–243 (2003)

    Article  Google Scholar 

  6. Williams, P., Beer, R., Gasser, M.: An embodied dynamical approach to relational categorization. In: Love, B., McRae, K., Sloutsky, V. (eds.) Proc. of the 30th Annual Conference of the Cognitive Science Society, pp. 223–228. Cognitive Science Society, Inc. (2008)

    Google Scholar 

  7. Scheier, C., Pfeifer, R., Kunyioshi, Y.: Embedded neural networks: exploiting constraints. Neural Networks 11(7-8), 1551–1596 (1998)

    Article  Google Scholar 

  8. Nolfi, S., Marocco, D.: Active perception: A sensorimotor account of object categorisation. In: Hallam, B., Floreano, D., Hallam, J., Hayes, G., Meyer, J.A. (eds.) Proc. of the 7th International Conference on Simulation of Adaptive Behavior (SAB 2002), pp. 266–271. MIT Press, Cambridge (2002)

    Google Scholar 

  9. Gigliotta, O., Nolfi, S.: On the coupling between agent internal and agent/ environmental dynamics: Development of spatial representations in evolving autonomous robots. Adaptive Behavior 16, 148–165 (2008)

    Article  Google Scholar 

  10. Tuci, E., Trianni, V., Dorigo, M.: Feeling the flow of time through sensory-motor coordination. Connection Science 16(4), 301–324 (2004)

    Article  Google Scholar 

  11. Tuci, E., Massera, G., Nolfi, S.: Active categorical perception in an evolved anthropomorphic robotic arm. In: Proc. of the IEEE Conference on Evolutionay Computation (CEC 2009), Special Session on Evolutionary Robotics (2009), ISBN: 978-1-4244-2959-2, Draft available at http://laral.istc.cnr.it/elio.tuci/pagn/pubb.html

  12. Massera, G., Cangelosi, A., Nolfi, S.: Evolution of prehension ability in an anthropomorphic neurorobotic arm. Front. Neurorobot. 1 (2007)

    Google Scholar 

  13. Beer, R., Gallagher, J.: Evolving dynamic neural networks for adaptive behavior. Adaptive Behavior 1(1), 91–122 (1992)

    Article  Google Scholar 

  14. Goldberg, D.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  15. Strogatz, S.: Nonlinear Dynamics and Chaos. Perseus Books Publishing, Cambridge (2000)

    Google Scholar 

  16. Thornton, C.: Separability is a learner’s best friend. In: Bullinaria, J., Glasspool, D., Houghton, G. (eds.) Proc. of the 4th Neural Computation and Psychology Workshop: Connectionist Representations, pp. 40–47. Springer, London (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tuci, E., Massera, G., Nolfi, S. (2011). On the Dynamics of Active Categorisation of Different Objects Shape through Tactile Sensors. In: Kampis, G., Karsai, I., Szathmáry, E. (eds) Advances in Artificial Life. Darwin Meets von Neumann. ECAL 2009. Lecture Notes in Computer Science(), vol 5777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21283-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21283-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21282-6

  • Online ISBN: 978-3-642-21283-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics