Skip to main content

Guiding for Associative Learning: How to Shape Artificial Dynamic Cognition

  • Conference paper
Advances in Artificial Life. Darwin Meets von Neumann (ECAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5777))

Included in the following conference series:

  • 1307 Accesses

Abstract

This paper describes an evolutionary robotics experiment, which aims at showing the possibility of learning by guidance in a dynamic cognition perspective. Our model relies on Continuous Time Recurrent Neural Networks and Hebbian plasticity. The agents have the ability to be guided by stimuli and we study the influence of a guidance on their external behavior and internal dynamic when faced with other stimuli. The article develops the experiment and presents some results on the dynamic of the systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beer, R.D.: Dynamical approaches to cognitive science. Trends in Cognitive Sciences 4(3), 91–99 (2000)

    Article  MathSciNet  Google Scholar 

  2. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47, 139–159 (1991)

    Article  Google Scholar 

  3. Di Paolo, E.A.: Homeostatic adaptation to inversion in the visual field and other sensorimotor disruptions. In: Meyer, J.A., Berthoz, A., Floreano, D., Roitblat, H.L., Wilson, S.W. (eds.) From Animals to Animats 6. Proceedings of the VI International Conference on Simulation of Adaptove Behavior, pp. 440–449 (2000)

    Google Scholar 

  4. Froese, T., Ziemke, T.: Enactive artificial intelligence: Investigating the systemic organization of life and mind. Artif. Intell. 173(3-4), 466–500 (2009)

    Article  Google Scholar 

  5. Funahashi, K., Nakamura, Y.: Approximation of dynamical systems by continuous time recurrent neural networks. Neural Networks 6, 801–806 (1993)

    Article  Google Scholar 

  6. Izquierdo, E., Harvey, I., Beer, R.D.: Associative learning on a continuum in evolved dynamical neural networks. Adaptive Behavior 16(6), 361–384 (2008)

    Article  Google Scholar 

  7. McMullin, B.: Thirty years of computational autopoiesis: A review. Artificial Life 10, 277–295 (2004)

    Article  Google Scholar 

  8. Montebelli, A., Herrera, C., Ziemke, T.: On cognition as dynamical coupling: An analysis of behavioral attractor dynamics. Adaptive Behavior 16, 182–195 (2008)

    Article  Google Scholar 

  9. Negrello, M., Pasemann, F.: Attractor landscapes and active tracking: The neurodynamics of embodied action. Adaptive Behavior 16, 196–216 (2008)

    Article  Google Scholar 

  10. Pfeifer, R., Gomez, G.: Interacting with the real world: design principles for intelligent systems. Artificial Life and Robotics 9(1), 1–6 (2005)

    Article  Google Scholar 

  11. Pfeifer, R., Bongard, J.C.: How the Body Shapes the Way We Think, A New View of Intelligence. MIT Press, Cambridge (2006)

    Google Scholar 

  12. Simao, J.: Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty: Theory and Applications. In: Recurrent Neural Networks, pp. 400–420 (2008)

    Google Scholar 

  13. Varela, F.J., Thompson, E., Rosch, E.: The Embodied Mind. MIT Press, Cambridge (1993)

    Google Scholar 

  14. Wood, R., Di Paolo, E.A.: New models for old questions: Evolutionary robotics and the ‘A not B’ error. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1141–1150. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manac’h, K., De Loor, P. (2011). Guiding for Associative Learning: How to Shape Artificial Dynamic Cognition. In: Kampis, G., Karsai, I., Szathmáry, E. (eds) Advances in Artificial Life. Darwin Meets von Neumann. ECAL 2009. Lecture Notes in Computer Science(), vol 5777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21283-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21283-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21282-6

  • Online ISBN: 978-3-642-21283-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics