Skip to main content

Evolution of the Morphology and Patterning of Artificial Embryos: Scaling the Tricolour Problem to the Third Dimension

  • Conference paper
Advances in Artificial Life. Darwin Meets von Neumann (ECAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5777))

Included in the following conference series:

  • 1348 Accesses

Abstract

We present a model of three-dimensional artificial embryogenesis in which a multicellular embryo develops controlled by a continuous regulatory network encoded in a linear genome. Development takes place in a continuous space, with spherical cells of variable size, and is controlled by simulated physics. We apply a genetic algorithm to the problem of the simultaneous evolution of morphology and patterning into colour stripes and demonstrate how the system achieves the task by exploiting physical forces and using self-generated morphogen gradients. We observe a high degree of robustness to damage in evolved individuals and explore the limits of the system using more complex variations of the problem. We find that the system remains highly evolvable despite the increased complexity of three-dimensional space and the flexible coding of the genome requiring from evolution to invent all necessary morphogens and transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bentley, P., Kumar, S.: Three ways to grow designs: A comparison of embryogenies for an evolutionary design problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, vol. 1, pp. 35–43. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  2. Stanley, K., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artificial Life 9(2), 93–130 (2003)

    Article  Google Scholar 

  3. Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25(1), 1–47 (1969)

    Article  Google Scholar 

  4. Miller, J.F.: Evolving a self-repairing, self-regulating, french flag organism. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 129–139. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Beurier, G., Michel, F., Ferber, J.: A morphogenesis model for multiagent embryogeny. In: Proceedings of ALIFE X, pp. 84–90. MIT Press, Cambridge (2006)

    Google Scholar 

  6. Chavoya, A., Duthen, Y.: A cell pattern generation model based on an extended artificial regulatory network. Biosystems 94(1-2), 95–101 (2008)

    Article  Google Scholar 

  7. Hogeweg, P.: Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. J. Theor. Biol. 203(4), 317–333 (2000)

    Article  Google Scholar 

  8. Knabe, J.F., Nehaniv, C.L., Schilstra, M.J.: Evolution and morphogenesis of differentiated multicellular organisms: autonomously generated diffusion gradients for positional information. In: Proceedings of ALIFE XI, pp. 321–328. MIT Press, Cambridge (2008)

    Google Scholar 

  9. Hotz, P.E.: Genome-physics interaction as a new concept to reduce the number of genetic parameters in artificial evolution. In: Congress on Evolutionary Computation, CEC 2003., vol. 1, pp. 191–198 (2003)

    Google Scholar 

  10. Doursat, R.: Programmable architectures that are complex and self-organized: From morphogenesis to engineering. In: Proceedings of Artificial XI, pp. 181–188. MIT Press, Cambridge (2008)

    Google Scholar 

  11. Kumar, S.: Investigating Computational Models of Development for the Construction of Shape and Form. PhD thesis, Dept. of Computer Science, University College London (2004)

    Google Scholar 

  12. Joachimczak, M., Wróbel, B.: Evo-devo in silico: a model of a gene network regulating multicellular development in 3D space with artificial physics. In: Proceedings of Artificial XI, pp. 297–304. MIT Press, Cambridge (2008)

    Google Scholar 

  13. Haddow, P.C., Hoye, J.: Achieving a simple development model for 3D shapes: are chemicals necessary? In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO 2007), pp. 1013–1020. ACM, New York (2007)

    Chapter  Google Scholar 

  14. Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Springer, New York (1996)

    MATH  Google Scholar 

  15. Carroll, S.B., Grenier, J.K., Weatherbee, S.D.: From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Blackwell Publishers, Malden (2004)

    Google Scholar 

  16. Eggenberger, P.: Exploring regenerative mechanisms found in flatworms by artificial evolutionary techniques using genetic regulatory networks. In: The Congress on Evolutionary Computation, CEC 2003, vol. 3, pp. 2026–2033 (2003)

    Google Scholar 

  17. Federici, D., Ziemke, T.: Why are evolved developing organisms also fault-tolerant? In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 449–460. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joachimczak, M., Wróbel, B. (2011). Evolution of the Morphology and Patterning of Artificial Embryos: Scaling the Tricolour Problem to the Third Dimension. In: Kampis, G., Karsai, I., Szathmáry, E. (eds) Advances in Artificial Life. Darwin Meets von Neumann. ECAL 2009. Lecture Notes in Computer Science(), vol 5777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21283-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21283-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21282-6

  • Online ISBN: 978-3-642-21283-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics