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Abstract. We investigate an artificial self-organizing multi-particle (also
multi-agent or swarm) system consisting of many (up to 103) reactive,
mobile agents. The agents’ movements are governed by a few simple
rules and interact indirectly via a pheromone field. The system gener-
ates a wide variety of complex patterns. For some parameter settings
this system shows a notable property: seemingly never-ending, dynamic
formation and reconfiguration of complex patterns. For other settings,
however, the system degenerates and converges after a transient to pat-
terns of low complexity. Therefore, we consider this model as an example
of a class of self-organizing systems that show complex behavior mainly
in the transient. In a first case study, we inspect the possibility of using
a standard genetic algorithm to prolongate the transients. We present
first promising results and investigate the evolved system.

1 Introduction

Self-organizing systems such as natural or artificial organisms and swarms often
form complex patterns [1–3]. In nature, these systems are subject to natural
selection, which evolves complex patterns by adapting simple behavioral rules
followed by the agents. In our work, we model similar complex systems and adapt
them by applying Evolutionary Computation. These systems are interpreted as
nonlinear dynamic systems that converge to a fixed point or to periodic behav-
ior. Some systems, however, show seemingly stable (i.e., fixed point or periodic
behavior) complex patterns although relevant steady states do not exist. Such
systems rely on quasi-stationary (or quasi-periodic) states that are induced by
long transients. The state of a system is said to be transient in the time segment
between the initialization of the system and before a steady state (e.g., a fixed
point, a periodic behavior, or a chaotic attractor) is reached. Examples of such
systems showing quasi-stationary behavior are models of ecological systems [4, 5]
and many phenomena surrounding us in our everyday life such as ourselves [6].
Typically, the transient shows a much more complex and interesting behavior
compared to the steady state, the system is actually slowly converging to.
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(a) t = 1 × 105. (b) t = 3 × 105. (c) t = 5 × 105. (d) t = 6 × 105.

Fig. 1. One pattern out of the variety of many of the investigated system (N = 3000,
L = 300, η = 0.04, parameters described below).

In this paper, we use a simple model of a multi-agent system. The agents move
according to a few simple rules and interact indirectly via a (virtual) pheromone
field. This model serves as an example of self-organized systems that depend
on long transients. Based on only two parameters (resolution of the pheromone
field discretization and/or the pheromone diffusion) we are able to change the
behavior between relatively short transients (i.e., relatively fast convergence to a
steady state of low complexity) and supposedly very long transients (actually so
long that we even cannot be sure whether they are transient at all). We artificially
restrict the system to rather low resolutions of the discretization leading to
mostly manageable transients that are numerically simulated within a reasonable
time. A first investigation of the transients was reported in [7]. Here, we try
to prolongate the transients and to increase the complexity of the patterns by
adjusting other parameters of the model. This is done by using a standard genetic
algorithm [8]. Thus, we evolve parameter settings that result in long transients
and high complexity which corresponds to increasing the time a self-organized
system shows complex behavior.

We propose that Evolutionary Computation is a suitable tool to shape com-
plex multi-particle systems in a desired manner. Together with the intrinsic
creative potential of such particle systems (see Fig. 1), both techniques in com-
bination serve as a powerful on-demand pattern generator. The objective of
this work is, on the one hand, to produce a multi-particle system showing dy-
namic pattern formation, that might be applied in many ways, for example, in a
novel robot controller concept or to generate pseudo-random textures for com-
puter graphics (e.g., similar to Perlin’s noise [9]). On the other hand, we want
to determine the relevance of transients in self-organized systems and how to
manipulate them.

2 Mathematical Model

In the following, we define the model of the investigated artificial multi-agent
system as reported before in [7]. This system may also be called multi-particle
system or swarm as it consists of many (up to 103) reactive agents (automata
that map receptions to actions without an internal world model). The model used
here is based on and is very similar to the model of complex transport networks
reported by Jeff Jones in [10]. The main differences between the models are a



semi-continuous representation of agent data in Jones’ model compared to a
continuous representation in our model and a different density control (based
on occupied patches in Jones’ model, based on maximal pheromone field values
here). Time is discrete in both models. Finally, both models are reduced to fully
discrete models, because they are simulated on digital computers. However, the
different methods of discretization do matter (rough discretization in patches
and floating point arithmetic). The agents move in two-dimensional space with
periodic boundary conditions (torus). The change of an agent’s position x is
defined by

dx

dt
=

(

cosφ
sinφ

)

v, (1)

for a velocity set to a constant value v > 0, except for the case that the local
pheromone value is above a threshold Pmax (then we set v = 0). The change of
the agent’s direction φ is defined by

dφ

dt
= α(sl(t), sc(t), sr(t))γ(t), (2)

for α(sl(t), sc(t), sr(t)) ∈ {1, 0,−1} defining the direction of the turns (clock-
wise, no turn, or counterclockwise), γ defining the absolute value of the turn
angles, and for sensor values sc and sl that are defined by

sc(t) = P

(

x1 + cos(φ)d
x2 + sin(φ)d

)

, (3)

sl(t) = P

(

x1 + cos(φ− ψ)d
x2 + sin(φ− ψ)d

)

, (4)

for a pheromone field P representing the environment, x =

(

x1

x2

)

, sensor

angle ψ, and sensor distance d. sr is defined analog to sl. Closely following [10],
we define

α(sl(t), sc(t), sr(t)) =
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0, for sc(t) > sl(t)

∧sc(t) > sr(t) (no turn)

±1, for sc(t) < sl(t)

∧sc(t) < sr(t) (random turn)

+1, for sl(t) < sr(t) (right turn)

−1, for sr(t) < sl(t) (left turn)

, (5)

whereas the order (from top to bottom) of the conditions matters. The ran-
dom turn has a probability of 50% for +1 and 50% for −1. We define

γ(t) =

{

φrot, for t ∈ {0, τ, 2τ, . . . }

0, else
, (6)



for a constant rotation angle φrot and a time interval τ at which the agents
turn and their directions are updated (in this work we set τ = 1). Thus, we obtain
a synchronized system that is discrete in time. The system could, for example,
be extended by defining γ as a stochastic process. This would transform Eq. 2
into a stochastic differential equation.

The pheromone field P is, in principle, defined by the standard diffusion
equation

∂P (x, t)

∂t
= D∇2P (x, t) − ηP (x, t) + θ

N
∑

i=1

δ(x − xi(t)), (7)

for diffusion D, evaporation rate η, addition θ (the Dirac delta indicates that
an agent only contributes to the pheromone field at its position), number of
agents N , and agent positions xi(t). However, for simplicity and to reduce the
computational complexity the diffusion and the evaporation are only executed
at t ∈ {0, 10τ, 20τ, . . . } unlike the addition process that is executed at t ∈
{0, τ, 2τ, . . . }.

As discussed above, the system is simulated on a digital computer. Thus, the
pheromone field needs to be discretized. This is done by a grid. Here, the grid
is chosen to be always quadratic and the number of grid points is given by L2.
In our implementation, the diffusion is not normalized in correspondence to the
resolution of the grid (as it would be necessary in classical numerics).

If provided with a sufficient resolution of the grid, that is discretizing the
pheromone field, the model shows a huge variety of complex patterns [7]. These
patterns form, collapse partially, form again, and seem never to recur. This way
the system shows high creativity that is very different compared to many other
self-organizing systems that converge (quickly) to a steady state. This is related
to the concept of synergetics where modes of high dynamics are governed by
modes of slow dynamics [11]. Throughout this work, the agents’ positions are
initialized by a random uniform distribution throughout the whole space. See
Fig. 1 for some examples of patterns formed in the pheromone field and see
Table 1 for the parameters used, if not stated explicitly.

3 Complexity and Transients

In order to investigate the model concerning transients we need a method de-
termining when a steady state is reached. In a high-dimensional system this
is, generally, difficult. In addition, we want also to evolve complex and dynamic
patterns. Thus, we restrict ourselves to a simpler (also concerning computational
complexity) but effective method. As we know from experience with the simula-
tor, the steady states are all of low complexity (patterns formed out of straight
lines with two, one, or no bifurcations or only clusters). Instead of checking for
a steady state it would suffice to find a metric that measures the complexity of
the dynamics.

In this work, we use the following metric: We put a second grid (called count-

ing grid) of lower resolution (here: 30 × 30) over the pheromone grid and count



Table 1. Standard parameters.

sensor angle ψ 45o

rotation angle φrot 45o

rotation period τ 1 [time units]
surface area of the torus s2 1 × 1[length units]2

grid length L 150
grid resolution L/s = 150[1/length units]
sensor distance d 0.035 [length units]
velocity v 0.01 [length units/τ ]
diffusion D 0.1 [(1/L)/(10τ)]
evaporation η 0.04 [1/(10τ)]
addition θ 5 [1/τ ]
active cell threshold δactive 30
max. pheromone value Pmax 300
simulated steps 5 × 104 [time units]

the grid points of the pheromone grid that are above a threshold δactive (called
active cells). If there are more than 50% active cells within one cell of the count-
ing grid we mark it as ‘on’ (otherwise ‘off’). It is sufficient to calculate the
current state of the counting grid only every 200 time steps because the motion
of the agents and the pattern dynamics occur on different time scales. Finally,
the value of our complexity metric β is determined by counting the differences
between the current counting grid and the one obtained 200 time steps before
(thus, β ∈ {0, . . . , 302}). See Fig. 2 for examples of the evolution of the complex-
ity measure β for different parameter settings. Fig. 2(a) shows an example of a
pattern that degenerates quickly to a collection of stationary clusters. Fig. 2(b)
shows a pattern that degenerates to a traveling pattern (causing oscillations in β
as it moves over the counting grid) of three lines and two bifurcations after a
transient of about 66,000 time steps.
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(a) ψ = 60o, φrot = 60o.
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(b) ψ = 30o, φrot = 30o.

Fig. 2. Examples of the temporal evolution of the complexity measure β (v = 0.01,
d = 0.06, η = 0.08, D = 0.05, N = 500).



4 Evolving Complex and Long Transients

In this section, our new approach of evolving parameter sets that generate long
transients with complex patterns is reported. The used optimizer is a standard
genetic algorithm based on GALOPPS 3.2.4 by Erik Goodman [12]. Four pa-
rameters were varied within given intervals: rotation angle φrot ∈ [10o, 90o],
sensor angle ψ ∈ [10o, 90o], diffusion constant D ∈ [10−3, 10−1], and number
of agents N ∈ [20, 210]. The velocity of the particles was fixed because changes
in the velocity are balanced by the diffusion constant as only the relation be-
tween these two parameters matters. The restriction to these intervals does only
exclude parameter settings leading to irrelevant patterns (based on our experi-
ence). The values were encoded in a 10 bit Gray code. Mutations were single bit
flips. Recombinations were two-point crossovers with leaving the 10-bit-groups
intact. The selection mechanism was stochastic universal sampling. The popula-
tion size was set to 20, the probability of a recombination was set to 0.05, and
the probability of a mutation was set to 0.05. The fitness was defined as the
sum of all changes in the counting grid until less than ten changes occurred for
ten successive checks (i.e., 2,000 time steps). The simulation was stopped after
105 time steps in any case. For the used random uniform initialization of agent
positions and directions this value was stochastic. The fitness was the mean of
three simulation runs of the individual. A single run of 500 generations takes
about three days of computing time on a contemporary desktop computer (sin-
gle core). The averaged results of four runs of the genetic algorithm are shown
in Fig. 3(a).
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(a) Fitness over 500 generations.
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(b) Complexity measure over time.

Fig. 3. Left: max., mean, and min. fitness of four runs over 500 generations (error-
bars indicate 95% confidence intervals). Right: Temporal evolution of the complexity
measure β of the best individual found.

Beginning with a mean fitness of 1,446, a peak mean fitness of 51,293 was
reached after 306 generations. The mean fitness of the best individual after
500 generations was 67,393. The best individuals of the four runs were very



similar; we give the averages and the standard deviations: φrot = 89.4o ± 0.39,
ψ = 10.1o ± 0.16, D = 0.00125 ± 5 × 10−4, and N = 582.5 ± 38.2.

The following analysis of the best individual shows the high degree of adap-
tivity to the fitness function. The evolution of the complexity measure for an
example run is shown in Fig. 3(b). The dynamics in the counting grid were very
high (cf. Fig. 2) with few interruptions. After about 450,000 time steps the pat-
tern degenerates to a single line in this example (typically the observed transient
was even longer). Thus, the pattern survives for the whole evaluation period (105

steps). The pheromone field of characteristic phases is plotted in Fig. 4.

(a) Chaotic phase. (b) Expanding rect. (c) Colliding rect. (d) Chaotic phase.

Fig. 4. Pheromone field of best individual.

The system shows, for most of the time, a rather chaotic behavior, see
Fig. 4(a). However, about two times per 300,000 time steps it forms an expand-
ing rectangle, see Fig. 4(b) to 4(d). The agents deform this rectangle because of
the rotation angle φrot = 89.609o 6= 90o. Through a non-trivial process this leads
to an expansion which continues until the rectangle collides with itself (space is
toroidal). Then another chaotic phases begins. These rectangle-formation-phases
are clearly identified in Fig. 3(b) as the short phases of low values (10 < β < 70).
The high fitness of this individual does not depend on the toroidal form of space
as observed in runs of the genetic algorithm with strict bounds at all four sides
(non-toroidal, data not shown).

5 Conclusions and Outlook

In this paper, we applied genetic algorithms successfully to increase the creativ-
ity and complexity of self-organizing systems by prolongating the transient. We
investigated a multi-agent system with simple rules that shows a huge variety
of complex patterns. This model is interpreted as an example of self-organized
systems that rely on long transients because the investigated systems only show
complex behavior before the steady state is reached. Parameter settings were
evolved that lead to longer transients and, thus, maximize the time complex
behavior is observed. The presented model is a microscopic (bottom-up) model
inspired by slime molds [10]. The observed patterns bear similarities to macro-
scopic (top-down) differential equation models of slime molds as reported in [13].
Other relevant models showing similar patterns are the macroscopic reaction-
diffusion models of animal coats [14, 15]. In our microscopic model changes in



the parameters result in a huge variety of patterns. Hence, small changes of
parameters might result in big changes in the quality of the patterns. Thus,
difficulties in evolving patterns with desired properties would be expected. In
this paper, we have shaped the emergent properties of a self-organizing system
according to our requirements by evolution. The fitness landscape seemed to
be good-natured and rather smooth because all four runs were successful and
resulted in very similar individuals. In the future, we will further explore the
abilities of multi-particle systems in combination with Evolutionary Computa-
tion. We will investigate those parameters in detail, which produce constantly
changing, complex patterns. Our goal is to shape these patterns in a way that
we are either able to manually construct them or to evolve them in a desired
way (e.g., to connect predefined points in the modeled space or to obtain inho-
mogeneous textures). Possible applications for such dynamic pattern generators
are ranging from artificial life, swarm robotics, and collective intelligence to arts
and other forms of visual design and computer graphics.
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