Skip to main content

Combining Different Interaction Strategies Reduces Uncertainty When Bootstrapping a Lexicon

  • Conference paper
Advances in Artificial Life. Darwin Meets von Neumann (ECAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5777))

Included in the following conference series:

  • 1289 Accesses

Abstract

When bootstrapping a new language, the agents in a population need to be able to agree on the meaning of the individual words. In order to do so, they need to overcome the problem of referential uncertainty, which captures the idea that the meaning of words can not realisticly be transferred directly between agents nor through the environment. One way to reduce the amount of uncertainty, is to allow the agents, based on their current knowledge of the language system and the environment, to choose the interaction script they play based on a motivational system. We show the impact of this idea through a computational model on the time needed for a population of agents to converge on a shared language system and how the motivational system allows the agents to self-regulate this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Steels, L.: Evolving grounded communication for robots. Trends in Cognitive Science 7, 308–312 (2003)

    Article  Google Scholar 

  2. Baronchelli, A., Loreto, V., Steels, L.: In-depth analysis of the naming game dynamics: the homogeneous mixing case. Int. J. Mod. Phys. C 19, 785 (2008)

    Article  MATH  Google Scholar 

  3. Steels, L., Loetzsch, M.: Perspective alignment in spatial language. In: Coventry, K.R., Tenbrink, T., Bateman, J.A. (eds.) Spatial Language and Dialogue. Oxford University Press, Oxford (2007) (to appear)

    Google Scholar 

  4. De Beule, J.: The emergence of compositionality, hierarchy and recursion in peer-to-peer interactions. In: Smith, A.D.M., Smith, K., Ferrer-i-Cancho, R. (eds.) Proceedings of the 7th International Conference on the Evolution of Language, pp. 75–82. World Scientific, Singapore (2008)

    Google Scholar 

  5. van Trijp, R.: The emergence of semantic roles in Fuid construction grammar. In: Smith, A.D.M., Smith, K., Ferrer-i-Cancho, R. (eds.) Proceedings of the 7th International Conference on the Evolution of Language, pp. 346–353. World Scientific, Singapore (2008)

    Google Scholar 

  6. Steels, L., Belpaeme, T.: Coordinating perceptually grounded categories through language: A case study for colour. Behavioral and Brain Sciences 28(4), 469–489 (2005)

    Google Scholar 

  7. Wellens, P., Loetzsch, M., Steels, L.: Flexible word meaning in embodied agents. Connection Science 20, 173–191 (2008)

    Article  Google Scholar 

  8. Smith, A.D.M.: The inferential transmission of language. Adaptive Behavior 13(4), 311–324 (2005)

    Article  Google Scholar 

  9. De Beule, J., De Vylder, B., Belpaeme, T.: A cross-situational learning algorithm for damping homonymy in the guessing game. In: Rocha, L.M., et al. (eds.) Artificial Life X, pp. 466–472. MIT Press, Cambridge (2006)

    Google Scholar 

  10. Steels, L., Wellens, P.: Scaffolding language emergence using the autotelic principle. In: IEEE Symposium on Artificial Life, pp. 325–332 (2007)

    Google Scholar 

  11. Steels, L., Kaplan, F.: Spontaneous lexicon change. In: COLING-ACL 1998, ACL, Montreal, pp. 1243–1249 (1998)

    Google Scholar 

  12. Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. Harper Perennial (1991)

    Google Scholar 

  13. Steels, L.: The autotelic principle. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence. LNCS (LNAI), vol. 3139, pp. 231–242. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Quine, W.: Word and Object. MIT Press, Cambridge (1960)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cederborg, T. (2011). Combining Different Interaction Strategies Reduces Uncertainty When Bootstrapping a Lexicon. In: Kampis, G., Karsai, I., Szathmáry, E. (eds) Advances in Artificial Life. Darwin Meets von Neumann. ECAL 2009. Lecture Notes in Computer Science(), vol 5777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21283-3_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21283-3_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21282-6

  • Online ISBN: 978-3-642-21283-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics