Skip to main content

Abstract

Complex rostering problems often require to recognize and count some patterns in the employees’ schedules. The number of occurrences of such patterns is then constrained to comply union rules, business requirements, and other workflow constraints. A common approach to deal with these constraints is to model them as cost-regular constraints but the resulting automata are not trivial to encode manually. This paper proposes a new constraint, the pattern constraint, whose goal is to recognize sets of patterns and constrains their occurrences. The pattern constraint is implemented in two different ways, relying respectively on a modified version of the regular constraint and on the cost-regular constraint. Both approaches employ an algorithm that automatically encodes the underlying automaton. As a result, the pattern constraint provides a high-level modeling abstraction, removing the burden of encoding automata for pattern recognition and allowing to automate the creation of complex models for rostering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Patat 2010 - Nurse Rostering Competition, http://www.kuleuven-kortrijk.be/nrpcompetition (Online; accessed March 11, 2011)

  2. Aho, A.V., Corasick, M.J.: Efficient String Matching: an Aid to Bibliographic Search. Communication of ACM 18, 333–340 (1975)

    Article  MathSciNet  Google Scholar 

  3. Beldiceanu, N., Carlsson, M.: Revisiting the Cardinality Operator and Introducing the Cardinality − Path Constraint Family. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 59–73. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Demassey, S., Pesant, G., Rousseau, L.-M.: A Cost-Regular Based Hybrid Column Generation Approach. Constraints 11(4), 315–333 (2006)

    Article  MathSciNet  Google Scholar 

  5. Menana, J., Demassey, S.: Sequencing and Counting with the multicost-regular Constraint. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 178–192. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Menana, J., Demassey, S., Jussien, N.: Modélisation et Optimisation des Préférences en Planification de Personnel. Research report 10-01-INFO, École des Mines de Nantes (2010)

    Google Scholar 

  7. Métivier, J.-P., Boizumault, P., Loudni, S.: Solving nurse rostering problems using soft global constraints. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 73–87. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. University of Nottingham. Staff Rostering Benchmark, http://www.cs.nott.ac.uk/~tec/NRP/ (Online; accessed March 11, 2011)

  9. Pesant, G.: A Regular Language Membership Constraint for Finite Sequences of Variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Quimper, C.-G., Walsh, T.: Global grammar constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 751–755. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zanarini, A., Van Hentenryck, P. (2011). Identifying Patterns in Sequences of Variables. In: Achterberg, T., Beck, J.C. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2011. Lecture Notes in Computer Science, vol 6697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21311-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21311-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21310-6

  • Online ISBN: 978-3-642-21311-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics