Skip to main content

Evolution of Individual Group Size Preference Can Increase Group-Level Selection and Cooperation

  • Conference paper
Advances in Artificial Life. Darwin Meets von Neumann (ECAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5778))

Included in the following conference series:

  • 1789 Accesses

Abstract

The question of how cooperative groups can evolve and be maintained is fundamental to understanding the evolution of social behaviour in general, and the major transitions in particular. Here, we show how selection on an individual trait for group size preference can increase variance in fitness at the group-level, thereby leading to an increase in cooperation through stronger group selection. We are thus able to show conditions under which a population can evolve from an initial state with low cooperation and only weak group selection, to one where group selection is a highly effective force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stewart, J.: Evolutionary transitions and artificial life. Artificial Life 3(2), 101–120 (1997)

    Article  Google Scholar 

  2. Nitschke, G.: Emergence of cooperation: State of the art. Artificial Life 11, 367–396 (2005)

    Article  Google Scholar 

  3. Hammerstein, P.: Genetic and Cultural Evolution of Cooperation. MIT Press, Cambridge (2003)

    Google Scholar 

  4. West, S.A., Griffin, A.S., Gardner, A.: Evolutionary explanations for cooperation. Current Biology 17(16), R661–R672 (2007)

    Article  Google Scholar 

  5. Maynard Smith, J., Szathmáry, E.: Major Transitions in Evolution. Spektrum (1995)

    Google Scholar 

  6. Michod, R.E.: Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality. Princeton University Press, Princeton (1999)

    MATH  Google Scholar 

  7. Bedau, M.A.: Artificial life: organization, adaptation, and complexity from the bottom up. Trends in Cognitive Science 7, 505–512 (2003)

    Article  Google Scholar 

  8. Wilson, D.S., Sober, E.: Reintroducing group selection to the human behavioral sciences. Behavioral and Brain Sciences 17(4), 585–654 (1994)

    Article  Google Scholar 

  9. Maynard Smith, J.: Group selection. Quarterly Review of Biology 51, 277–283 (1976)

    Article  Google Scholar 

  10. Wilson, D.S.: Altruism in mendelian populations derived from sibling groups: The Haystack model revisited. Evolution 41(5), 1059–1070 (1987)

    Article  Google Scholar 

  11. Wilson, D.S., Colwell, R.K.: Evolution of sex ratio in structured demes. Evolution 35(5), 882–897 (1981)

    Article  Google Scholar 

  12. Flemming, H.C., Neu, T.R., Wozniak, D.J.: The EPS matrix: The ”House of Biofilm Cells”. Journal of Bacteriology 189(22), 7945–7947 (2007)

    Article  Google Scholar 

  13. Powers, S.T., Penn, A.S., Watson, R.A.: Individual selection for cooperative group formation. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 585–594. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Avilés, L.: Cooperation and non-linear dynamics: An ecological perspective on the evolution of sociality. Evolutionary Ecology Research 1, 459–477 (1999)

    Google Scholar 

  15. Maynard Smith, J.: Group selection and kin selection. Nature 201, 1145–1147 (1964)

    Article  Google Scholar 

  16. Doebeli, M., Hauert, C.: Models of cooperation based on the prisoner’s dilemma and the snowdrift game. Ecology Letters 8(7), 748–766 (2005)

    Article  Google Scholar 

  17. Gore, J., Youk, H., van Oudenaarden, A.: Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256 (2009)

    Article  Google Scholar 

  18. Powers, S.T., Penn, A.S., Watson, R.A.: The efficacy of group selection is increased by coexistence dynamics within groups. In: Proceedings of ALife XI, pp. 498–505. MIT Press, Cambridge (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Powers, S.T., Watson, R.A. (2011). Evolution of Individual Group Size Preference Can Increase Group-Level Selection and Cooperation. In: Kampis, G., Karsai, I., Szathmáry, E. (eds) Advances in Artificial Life. Darwin Meets von Neumann. ECAL 2009. Lecture Notes in Computer Science(), vol 5778. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21314-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21314-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21313-7

  • Online ISBN: 978-3-642-21314-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics