Skip to main content

Digging into IP Flow Records with a Visual Kernel Method

  • Conference paper
Computational Intelligence in Security for Information Systems

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6694))

Abstract

This paper presents a network monitoring framework with an intuitive visualization engine. The framework leverages a kernel method with spatial and temporal aggregated IP flows for the off/online processing of Netflow records and full packet captures from ISP and honeypot input data and is operating on aggregated Netflow records and is supporting network management activities related to the anomaly and attack detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cifarelli, C., Nieddu, L., Seref, O., Pardalos, P.M.: K.-T.R.A.C.E.: A kernel k-means procedure for classification. Computers and Operations Research 34(10), 3154–3161 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cho, K., Kaizaki, R., Kato, A.: Aguri: An aggregation-based traffic profiler. In: Smirnov, M., Crowcroft, J., Roberts, J., Boavida, F. (eds.) QofIS 2001. LNCS, vol. 2156, pp. 222–242. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Cowlishaw, M.F.: Fundamental Requirements for Picture Presentation. Proceedings of the Society for Picture Presentation 26(2), 101–107 (1985)

    Google Scholar 

  4. Glanfield, J., Brooks, S., Taylor, T., Paterson, D., Smith, C., Gates, C., McHugh, J.: OverFlow: An Overview Visualization for Network Analysis. In: 6th International Workshop on Visualization for Cyber Security, Atlantic City, NJ (2009)

    Google Scholar 

  5. Goodall, J.R., Tesone, D.R.: Visual Analytics for Network Flow Analysis. In: Conference for Homeland Security, Cybersecurity Applications & Technology, pp. 199–204. IEEE, Los Alamitos (2009)

    Chapter  Google Scholar 

  6. Mansmann, F., Fischer, F., Keim, D.A., North, S.C.: Visual Support for Analyzing Network Traffic and Intrusion Detection Events using TreeMap and Graph Representations. In: Proceeding of ACM CHiMitiT 2009, Balitmore, Maryland, pp. 19–28 (2009)

    Google Scholar 

  7. Paredes-Oliva, I.: Portscan Detection with Sampled NetFlow. In: Papadopouli, M., Owezarski, P., Pras, A. (eds.) TMA 2009. LNCS, vol. 5537, pp. 26–33. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Patole, V.A., Pachghare, V.K., Kulkarni, P.: Self Organizing Maps to build Intrusion Detection Systems. Journal of Computer Applications 1(8) (2010)

    Google Scholar 

  9. Rieck, K.: Machine Learning for Application-layer Intrusion Detection. In: Fraunhofer Institute FIRST and Berlin Institute of Technology, Berlin, Germany (2009)

    Google Scholar 

  10. Spitzner, L.: Honeypots: Tracking Hackers. Addison-Wesley Professional, Reading (2002)

    Google Scholar 

  11. Vapnik, V.: Statistical Learning Theory. Wiley, Chichester (1998)

    MATH  Google Scholar 

  12. Wagner, C., Wagener, G., State, R., Dulaunoy, A., Engel, T.: Game Theory Driven Monitoring of Spatial-Aggregated IP-Flow Records. In: 6th International Conference on Network and Services Management, Niagara Falls, Canada (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wagner, C., Wagener, G., State, R., Engel, T. (2011). Digging into IP Flow Records with a Visual Kernel Method. In: Herrero, Á., Corchado, E. (eds) Computational Intelligence in Security for Information Systems. Lecture Notes in Computer Science, vol 6694. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21323-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21323-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21322-9

  • Online ISBN: 978-3-642-21323-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics