Abstract
This paper presents a network monitoring framework with an intuitive visualization engine. The framework leverages a kernel method with spatial and temporal aggregated IP flows for the off/online processing of Netflow records and full packet captures from ISP and honeypot input data and is operating on aggregated Netflow records and is supporting network management activities related to the anomaly and attack detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cifarelli, C., Nieddu, L., Seref, O., Pardalos, P.M.: K.-T.R.A.C.E.: A kernel k-means procedure for classification. Computers and Operations Research 34(10), 3154–3161 (2007)
Cho, K., Kaizaki, R., Kato, A.: Aguri: An aggregation-based traffic profiler. In: Smirnov, M., Crowcroft, J., Roberts, J., Boavida, F. (eds.) QofIS 2001. LNCS, vol. 2156, pp. 222–242. Springer, Heidelberg (2001)
Cowlishaw, M.F.: Fundamental Requirements for Picture Presentation. Proceedings of the Society for Picture Presentation 26(2), 101–107 (1985)
Glanfield, J., Brooks, S., Taylor, T., Paterson, D., Smith, C., Gates, C., McHugh, J.: OverFlow: An Overview Visualization for Network Analysis. In: 6th International Workshop on Visualization for Cyber Security, Atlantic City, NJ (2009)
Goodall, J.R., Tesone, D.R.: Visual Analytics for Network Flow Analysis. In: Conference for Homeland Security, Cybersecurity Applications & Technology, pp. 199–204. IEEE, Los Alamitos (2009)
Mansmann, F., Fischer, F., Keim, D.A., North, S.C.: Visual Support for Analyzing Network Traffic and Intrusion Detection Events using TreeMap and Graph Representations. In: Proceeding of ACM CHiMitiT 2009, Balitmore, Maryland, pp. 19–28 (2009)
Paredes-Oliva, I.: Portscan Detection with Sampled NetFlow. In: Papadopouli, M., Owezarski, P., Pras, A. (eds.) TMA 2009. LNCS, vol. 5537, pp. 26–33. Springer, Heidelberg (2009)
Patole, V.A., Pachghare, V.K., Kulkarni, P.: Self Organizing Maps to build Intrusion Detection Systems. Journal of Computer Applications 1(8) (2010)
Rieck, K.: Machine Learning for Application-layer Intrusion Detection. In: Fraunhofer Institute FIRST and Berlin Institute of Technology, Berlin, Germany (2009)
Spitzner, L.: Honeypots: Tracking Hackers. Addison-Wesley Professional, Reading (2002)
Vapnik, V.: Statistical Learning Theory. Wiley, Chichester (1998)
Wagner, C., Wagener, G., State, R., Dulaunoy, A., Engel, T.: Game Theory Driven Monitoring of Spatial-Aggregated IP-Flow Records. In: 6th International Conference on Network and Services Management, Niagara Falls, Canada (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wagner, C., Wagener, G., State, R., Engel, T. (2011). Digging into IP Flow Records with a Visual Kernel Method. In: Herrero, Á., Corchado, E. (eds) Computational Intelligence in Security for Information Systems. Lecture Notes in Computer Science, vol 6694. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21323-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-21323-6_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21322-9
Online ISBN: 978-3-642-21323-6
eBook Packages: Computer ScienceComputer Science (R0)