Abstract
In this work we show a framework for guiding the classical constraint programming resolution process. Such a framework allows one to measure the resolution process state in order to perform an “on the fly”replacement of strategies exhibiting poor performances. The replacement is performed depending on a quality rank, which is computed by means of a choice function. The choice function determines the performance of a given strategy in a given amount of time through a set of indicators and control parameters. The goal is to select promising strategies to achieve efficient resolution processes. The main novelty of our approach is that we reconfigure the search based solely on performance data gathered while solving the current problem. We report encouraging results where our combination of strategies outperforms the use of individual strategies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barták, R., Rudová, H.: Limited assignments: A new cutoff strategy for incomplete depth-first search. In: Proceedings of the 20th ACM Symposium on Applied Computing (SAC), pp. 388–392 (2005)
Beck, J.C., Prosser, P., Wallace, R.J.: Trying again to fail-first. In: Faltings, B.V., Petcu, A., Fages, F., Rossi, F. (eds.) CSCLP 2004. LNCS (LNAI), vol. 3419, pp. 41–55. Springer, Heidelberg (2005)
Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence (ECAI), pp. 146–150. IOS Press, Amsterdam (2004)
Chenouard, R., Granvilliers, L., Sebastian, P.: Search heuristics for constraint-aided embodiment design. AI EDAM 23(2), 175–195 (2009)
Epstein, S.L., Freuder, E.C., Wallace, R.J., Morozov, A., Samuels, B.: The adaptive constraint engine. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 525–542. Springer, Heidelberg (2002)
Monfroy, E., Castro, C., Crawford, B.: Adaptive enumeration strategies and metabacktracks for constraint solving. In: Yakhno, T., Neuhold, E.J. (eds.) ADVIS 2006. LNCS, vol. 4243, pp. 354–363. Springer, Heidelberg (2006)
Sadeh, N.M., Fox, M.S.: Variable and value ordering heuristics for the job shop scheduling constraint satisfaction problem. Artif. Intell. 86(1), 1–41 (1996)
Sturdy, P.: Learning good variable orderings. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, p. 997. Springer, Heidelberg (2003)
Wallace, R.J., Grimes, D.: Experimental studies of variable selection strategies based on constraint weights. J. Algorithms 63(1-3), 114–129 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Crawford, B., Soto, R., Castro, C., Monfroy, E. (2011). A Hyperheuristic Approach for Dynamic Enumeration Strategy Selection in Constraint Satisfaction. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) New Challenges on Bioinspired Applications. IWINAC 2011. Lecture Notes in Computer Science, vol 6687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21326-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-21326-7_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21325-0
Online ISBN: 978-3-642-21326-7
eBook Packages: Computer ScienceComputer Science (R0)