Skip to main content

Tools for Controlled Experiments and Calibration on Living Tissues Cultures

  • Conference paper
New Challenges on Bioinspired Applications (IWINAC 2011)

Abstract

In recent years, numerous studies attempted to demonstrate the feasibility of using live cell cultures as units of information processing. In this context, it is necessary to develop both hardware and software tools to facilitate this task. The later part is in the aim of this paper. It presents a complete software suite to design, develop, test, perform and record experiments on culture-based biological processes of living cells on multi-electrode array in a reliable, easy and efficient way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aertsen, A., Diesmann, M., Gewaltig, M.O.: Propagation of synchronous spiking activity in feedforward neural networks. J. Physiol. Paris 90(3-4), 243–247 (1996)

    Article  Google Scholar 

  2. Bakkum, D.J., Shkolnik, A.C., Ben-Ary, G., Gamblen, P., DeMarse, T.B., Potter, S.M.: Removing Some ‘A’ from AI: Embodied Cultured Networks. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence. LNCS (LNAI), vol. 3139, pp. 130–145. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Biedler, J.L., Roffler-Tarlov, S., Schachner, M., Freedman, L.S.: Multiple Neurotransmitter Synthesis by Human Neuroblastoma Cell Lines and Clones. American Association for Cancer Research (1978)

    Google Scholar 

  4. Bland, J.M., Altman, D.G.: Statistics notes: Multiple significance tests: the bonferroni method. BMJ 310(6973), 170 (1995)

    Article  Google Scholar 

  5. de Santos, D., Lorente, V., de la Paz, F., Cuadra, J.M., Álvarez-Sánchez, J.R., Fernández, E., Ferrández, J.M.: A client-server architecture for remotely controlling a robot using a closed-loop system with a biological neuroprocessor. Robotics and Autonomous Systems 58(12), 1223–1230 (2010)

    Article  Google Scholar 

  6. Demarse, T.B., Wagenaar, D.A., Blau, A.W., Steve, Potter, M.: The neurally controlled animat: Biological brains acting with simulated bodies. Autonomous Robots 11, 305–310 (2001)

    Article  MATH  Google Scholar 

  7. Ferrández, J.M., Lorente, V., Cuadra, J.M., de la Paz, F., Álvarez-Sánchez, J.R., Fernández, E.: A hybrid robotic control system using neuroblastoma cultures. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS, vol. 6076, pp. 245–253. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Frostig, R.D., Frostig, Z., Harper, R.M.: Information trains. the technique and its uses in spike train and network analysis, with examples taken from the nucleus parabrachialis medialis during sleep-waking states. Brain Research 322(1), 67–74 (1984)

    Article  Google Scholar 

  9. Gross, G.W.: Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface. IEEE Transactions on Biomedical Engineering BME-26(5), 273–279 (1979)

    Article  Google Scholar 

  10. Gütig, R., Sompolinsky, H.: The tempotron: a neuron that learns spike timing-based decisions. Nature Neuroscience 9(3), 420–428 (2006)

    Article  Google Scholar 

  11. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  12. Izhikevich, E.M.: Polychronization: Computation with spikes. Neural Computation 18(2), 245–282 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Izhikevich, E.M., Gally, J.A., Edelman, G.M.: Spike-timing dynamics of neuronal groups. Cereb. Cortex 14(8), 933–944 (2004)

    Article  Google Scholar 

  14. Multi Channel System MCS GmbH. STG100X RS232 Communication Manual

    Google Scholar 

  15. Multi Channel System MCS GmbH. Stimulus Generator 1000 Series User Manual (June 2007), http://www.multichannelsystems.com/uploads/media/STG1000_Manual_01.pdf

  16. Multi Channel System MCS GmbH. Temperature Controller TC01/02 User Manual (October 2007), http://www.multichannelsystems.com/uploads/media/TC01-2_Manual_04.pdf

  17. Multi Channel System MCS GmbH. MEA Amplifier with Blanking Circuit for Inverse Microscopes (December 2008), http://www.multichannelsystems.com/uploads/media/MEA1060-Inv_Manual_01.pdf

  18. Multi Channel System MCS GmbH. Microelectrode Array (MEA) Manual (October 2010), http://www.multichannelsystems.com/uploads/media/MEA_Manual_02.pdf

  19. Neundorf, A.: CuteCom (May 2009), http://cutecom.sourceforge.net/

  20. Quian Quiroga, R., Nadasdy, Z., Ben Shaul, Y.: Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16(8), 1661–1687 (2004)

    Article  MATH  Google Scholar 

  21. Taketani, M., Baudry, M.: Advances in Network Electrophysiology: Using Multi-Electrode Arrays. Springer, Heidelberg (2006)

    Book  Google Scholar 

  22. Vogels, T.P., Rajan, K., Abbott, L.F.: Neural network dynamics. Annual review of neuroscience 28(1), 357–376 (2005)

    Article  Google Scholar 

  23. Wagenaar, D.A., Pine, J., Potter, S.M.: An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neurosci. 7 (2006)

    Google Scholar 

  24. Wagenaar, D.A., DeMarse, T.B., Potter, S.M.: MeaBench: A toolset for multi-electrode data acquisition and on-line analysis. In: Proceedings of 2nd International IEEE EMBS Conference on Neural Engineering (March 2005), doi:10.1109/CNE.2005.1419673

    Google Scholar 

  25. Wagenaar, D.A., Nadasdy, Z., Potter, S.M.: Persistent dynamic attractors in activity patterns of cultured neuronal networks. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 73(5), 051907 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Santos, D., Cuadra, J.M., de la Paz, F., Lorente, V., Álvarez-Sánchez, J.R., Ferrández, J.M. (2011). Tools for Controlled Experiments and Calibration on Living Tissues Cultures. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) New Challenges on Bioinspired Applications. IWINAC 2011. Lecture Notes in Computer Science, vol 6687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21326-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21326-7_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21325-0

  • Online ISBN: 978-3-642-21326-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics