Skip to main content

Brain Status Data Analysis by Sliding EMD

  • Conference paper
New Challenges on Bioinspired Applications (IWINAC 2011)

Abstract

Biomedical signals are in general non-linear and non-stationary which renders them difficult to analyze with classical time series analysis techniques. Empirical Mode Decomposition (EMD) in conjunction with a Hilbert spectral transform, together called Hilbert-Huang Transform, is ideally suited to extract informative components which are characteristic of underlying biological or physiological processes. The method is fully adaptive and generates a complete set of orthogonal basis functions, called Intrinsic Mode Functions (IMFs), in a purely data-driven manner. Amplitude and frequency of IMFs may vary over time which renders them different from conventional basis systems and ideally suited to study non-linear and non-stationary time series. However, biomedical time series are often recorded over long time periods. This generates the need for efficient EMD algorithms which can analyze the data in real time. No such algorithms yet exist which are robust, efficient and easy to implement. The contribution shortly reviews the technique of EMD and related algorithms and develops an on-line variant, called slidingEMD, which is shown to perform well on large scale biomedical time series recorded during neuromonitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huang, N.E., Shen, Z., Long, S.R., Wu, M.L., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. Roy. Soc. London A 454, 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jánosi, I.M., Müller, R.: Empirical mode decomposition and correlation properties of long daily ozone records. Phys. Rev. E 71, 056126 (2005)

    Article  Google Scholar 

  3. Rilling, G., Flandrin, P., Goncalès, P.: On empirical mode decomposition and its algorithms. In: Proc. 6th IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (2003)

    Google Scholar 

  4. Wu, Z., Huang, N.: Ensemble empirical mode decomposition: A noise assisted data analysis method. Technical report, Center for Ocean-Land-Atmosphere Studies, 193, 51 (2005)

    Google Scholar 

  5. Flandrin, P., Gonçalvès, P., Rilling, G.: Emd equivalent filter banks: From interpretation to application. In: Huang, N., Shen, S. (eds.) Hilbert-Huang Transform: Introduction and Application, pp. 67–87. World Scientific, Singapore (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeiler, A. et al. (2011). Brain Status Data Analysis by Sliding EMD. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) New Challenges on Bioinspired Applications. IWINAC 2011. Lecture Notes in Computer Science, vol 6687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21326-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21326-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21325-0

  • Online ISBN: 978-3-642-21326-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics