Abstract
We use a very conventional model of computation to define unconventional computational processes. This leads to an easily computable class of real functions, however, this class is very different to those of nicely behaving real functions in a classical sense. All this is based on the fact that the topology of the unit interval is very different to that of infinite words representing numbers in that interval. In addition, the very inherent recursive structure of finite automata is central here.
Work supported by the Academy of Finland project 121419.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berstel, J., Reutenauer, C.: Noncommutative rational series with applications. Encyclopedia of Mathematics and its Applications, (137). Cambridge University Press, Cambridge (2010)
Culik II, K., Karhumäki, J.: Finite automata computing real functions. SIAM J. Comput. 23, 789–814 (1994)
Derencourt, D., Karhumäki, J., Latteux, M., Terlutte, A.: On continuous functions computed by finite automata. RAIRO-Theor. Inf. Appl. 29, 387–403 (1994)
Droste, M., Kari, J., Steinby, P.: Observations on the smoothness properties of real functions computed by weighted finite automata. Fund. Inform. 73(1,2), 99–106 (2006)
Eilenberg, S.: Automata, languages and machines. Academic Press, London (1974)
Karhumäki, J., Kari, J.: Finite automata, image manipulation and automatic real functions. In: Handbook of Automata. European Mathematical Society (to appear)
Sallinen, T.: Reaalifunktioiden laskennasta automaateilla. Master’s thesis, University of Turku (2009)
Salomaa, A., Soittola, M.: Automata-theoretic aspects of formal power series. Springer, Heidelberg (1978)
Schützenberger, M.P.: On the definition of a family of automata. Information and Control 4, 245–270 (1961)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Karhumäki, J., Sallinen, T. (2011). Weighted Finite Automata: Computing with Different Topologies. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds) Unconventional Computation. UC 2011. Lecture Notes in Computer Science, vol 6714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21341-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-21341-0_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21340-3
Online ISBN: 978-3-642-21341-0
eBook Packages: Computer ScienceComputer Science (R0)