Skip to main content

Concurrent Modular Q-Learning with Local Rewards on Linked Multi-Component Robotic Systems

  • Conference paper
Foundations on Natural and Artificial Computation (IWINAC 2011)

Abstract

Applying conventional Q-Learning to Multi-Component Robotic Systems (MCRS) increasing the number of components produces an exponential growth of state storage requirements. Modular approaches limit the state size growth to be polynomial on the number of components, allowing more manageable state representation and manipulation. In this article, we advance on previous works on a modular Q-learning approach to learn the distributed control of a Linked MCRS. We have chosen a paradigmatic application of this kind of systems using only local rewards: a set of robots carrying a hose from some initial configuration to a desired goal. The hose dynamics are simplified to be a distance constraint on the robots positions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Busoniu, L., Babuska, R., Schutter, B.D.: A comprehensive survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 38(2), 156–172 (2008)

    Article  Google Scholar 

  2. Duro, R.J., Graña, M., de Lope, J.: On the potential contributions of hybrid intelligent approaches to multicomponen robotic system development. Information Sciences 180(14), 2635–2648 (2010)

    Article  Google Scholar 

  3. Echegoyen, Z., Villaverde, I., Moreno, R., Graña, M., d’Anjou, A.: Linked multi-component mobile robots: modeling, simulation and control. Robotics and Autonomous Systems 58(12), 1292–1305 (2010)

    Article  Google Scholar 

  4. Fernandez-Gauna, B., Graña, M., Lopez-Guede, J.M.: Towards concurrent q-learning on linked multi-component robotic systems. In: HAIS 2011. LNCS (LNAI), Springer, Heidelberg (2011) (in press)

    Google Scholar 

  5. Fernandez-Gauna, B., Lopez-Guede, J.M., Zulueta, E., Graña, M.: Learning hose transport control with Q-learning. Neural Network World 20(7), 913–923 (2010)

    Google Scholar 

  6. Fernandez-Gauna, B., Lopez-Guede, J.M., Zulueta, E.: Linked multicomponent robotic systems: Basic assessment of linking element dynamical effect. In: Corchado, E., Graña, M., Savio, A. (eds.) Hybrid Artificial Intelligence Systems, Part I, vol. 6076, pp. 73–79. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Fernandez-Gauna, B., Lopez-Guede, J.M., Zulueta, E., Echegoyen, Z., Graña, M.: Basic results and experiments on robotic multi-agent system for hose deployment and transportation. International Journal of Artificial Intelligence 6(S11), 183–202 (2011)

    Google Scholar 

  8. Graña, M., Torrealdea, F.J.: Hierarchically structured systems. European Journal of Operational Research 25, 20–26 (1986)

    Article  Google Scholar 

  9. Maravall, D., de Lope, J., Martin, J.A.: Hybridizing evolutionary computation and reinforcement learning for the design of almost universal controllers for autonomous robots. Neurocomputing 72(4-6), 887–894 (2009)

    Article  Google Scholar 

  10. Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. Autonomous Agents and Multi-Agent Systems 11(3), 387–434 (2005)

    Article  Google Scholar 

  11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  12. Whitehead, S., Karlsson, J., Tenenberg, J.: Learning multiple goal behavior via task decomposition and dynamic policy merging. In: Robot Learning, pp. 45–78. Kluwer Academic Publisher, Dordrecht (1993)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernandez-Gauna, B., Lopez-Guede, J.M., Graña, M. (2011). Concurrent Modular Q-Learning with Local Rewards on Linked Multi-Component Robotic Systems. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) Foundations on Natural and Artificial Computation. IWINAC 2011. Lecture Notes in Computer Science, vol 6686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21344-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21344-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21343-4

  • Online ISBN: 978-3-642-21344-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics