Skip to main content

On the Use of Human-Guided Evolutionary Algorithms for Tackling 2D Packing Problems

  • Conference paper
Foundations on Natural and Artificial Computation (IWINAC 2011)

Abstract

We consider a 2D packing problem in which a collection of rectangular objects have to be arranged within a larger rectangular area of fixed width, such that its height is minimized. This problem is tackled using evolutionary algorithms that combine permutational decoders and GRASP-based principles. It is shown that this approach can be improved by allowing the user interact with the algorithm, tuning the greediness of the genotype-to-phenotype decoding. Experiments are presented on three different problem instances with sizes ranging from 19 up to 49 objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dyckhoff, H.: A typology of cutting and packing problems. European Journal of Operational Research 44, 145–159 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hopper, E., Turton, B.: An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. European Journal of Operational Research 128, 34–57 (2001)

    Article  MATH  Google Scholar 

  3. Cieliebak, M., Hall, A., Jacob, R., Nunkesser, M.: Sequential vector packing. Theoretical Computer Science 409(3), 351–363 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hopper, E., Turton, B.: A review of the application of meta-heuristic algorithms to 2d regular and irregular strip packing problems. Artificial Intelligence Review 16, 257–300 (2001)

    Article  MATH  Google Scholar 

  5. Hart, W.E., Belew, R.K.: Optimizing an arbitrary function is hard for the genetic algorithm. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the 4th International Conference on Genetic Algorithms, pp. 190–195. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  6. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

    Article  Google Scholar 

  7. Davis, L.D.: Handbook of Genetic Algorithms. Van Nostrand Reinhold Computer Library, New York (1991)

    Google Scholar 

  8. Cotta, C., Fernández, A.J.: A hybrid GRASP – evolutionary algorithm approach to golomb ruler search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 481–490. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Banzhaf, W.: Interactive evolution. In: Back, T., Fogel, D., Michalewicz, Z. (eds.) Evolutionary Computation. Basic Algorithms and Operators, pp. 228–234. IoP, Bristol (2000)

    Google Scholar 

  10. Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation. Proceedings of the IEEE (9), 1275–1296 (2001)

    Google Scholar 

  11. Parmee, I.C., Abraham, J.A.R., Machwe, A.: User-centric evolutionary computing: Melding human and machine capability to satisfy multiple criteria. In: Knowles, J., Corne, D., Deb, K., Chair, D.R. (eds.) Multiobjective Problem Solving from Nature. Natural Computing Series, pp. 263–283. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Hwang, I.: An efficient processor allocation algorithm using two-dimensional packing. Journal of Parallel and Distributed Computing 42(1), 75–81 (1997)

    Article  MATH  Google Scholar 

  13. Burke, E., Kendall, G.: Comparison of meta-heuristic algorithms for clustering rectangles. Computers & Industrial Engineering 37(1-2), 383–386 (1999)

    Article  Google Scholar 

  14. Falkenauer, E.: Genetic Algorithms and Grouping Problems. J. Wiley & Sons, Chichester (1998)

    MATH  Google Scholar 

  15. Chazelle, B.: The bottom left bin packing heuristic: an efficient implementation. IEEE Transactions on Computers 32, 697–707 (1983)

    Article  MATH  Google Scholar 

  16. Burke, E., Kendall, G., Whitwell, G.: A new placement heuristic for the orthogonal stock-cutting problem. Operations Research 52, 697–707 (2004)

    Article  MATH  Google Scholar 

  17. Alvarez-Valdes, R., Parreno, F., Tamarit, J.: Reactive grasp for the strip-packing problem. Computers & Operations Research 35(4), 1065–1083 (2008)

    Article  MATH  Google Scholar 

  18. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Prais, M., Ribeiro, C.: Reactive GRASP: an application to a matrix decomposition problem in TDMA traffic assignment. INFORMS Journal on Computing 12, 164–176 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Espinar, J., Cotta, C., Fernández Leiva, A.J. (2011). On the Use of Human-Guided Evolutionary Algorithms for Tackling 2D Packing Problems. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) Foundations on Natural and Artificial Computation. IWINAC 2011. Lecture Notes in Computer Science, vol 6686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21344-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21344-1_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21343-4

  • Online ISBN: 978-3-642-21344-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics