
Relational verification using product programs

Gilles Barthe, Juan Manuel Crespo, and César Kunz

IMDEA Software, Madrid, Spain

Abstract. Relational program logics are formalisms for specifying and
verifying properties about two programs or two runs of the same pro-
gram. These properties range from correctness of compiler optimizations
or equivalence between two implementations of an abstract data type,
to properties like non-interference or determinism. Yet the current tech-
nology for relational verification remains underdeveloped. We provide a
general notion of product program that supports a direct reduction of re-
lational verification to standard verification. We illustrate the benefits of
our method with selected examples, including non-interference, standard
loop optimizations, and a state-of-the-art optimization for incremental
computation. All examples have been verified using the Why tool.

1 Introduction

Relational reasoning provides an effective mean to understand program behav-
ior: in particular, it allows to establish that the same program behaves similarly
on two different runs, or that two programs execute in a related fashion. Prime
examples of relational properties include notions of simulation and observational
equivalence, and 2-properties, such as non-interference and continuity. In the for-
mer, the property considers two programs, possibly written in different languages
and having different notions of states, and establishes a relationship between
their execution traces, whereas in the latter only one program is considered, and
the relationship considers two executions of that program.

In spite of its important role, and of the wide range of properties it covers,
there is a lack of applicable program logics and tools for relational reasoning.
Indeed, existing logics [7, 23] are confined to reasoning about structurally equal
programs, and are not implemented. This is in sharp contrast with the more
traditional program logics for which robust tool support is available. Thus, one
natural approach to bring relational verification to a status similar to standard
verification is to devise methods that soundly transform relational verification
tasks into standard ones. More specifically for specifications expressed using pre
and post-conditions, one would aim at developing methods to transform Hoare
quadruples of the form {ϕ} c1∼ c2 {ψ}, where ϕ and ψ are relations on the states
of the command c1 and the states of the command c2, into Hoare triples of the
form {ϕ̄} c {ψ̄}, where ϕ̄ and ψ̄ are predicates on the states of the command c,
and such that the validity of the Hoare triple entails the validity of the original
Hoare quadruple; using |= to denote validity, the goal is to find c, ϕ̄ and ψ̄ such
that

|= {ϕ̄} c {ψ̄} ⇒ |= {ϕ} c1∼ c2 {ψ}

Consider two simple imperative programs c1 and c2 and assume that they are sep-
arable, i.e. operate on disjoint variables. Then we can let assertions be first-order
formulae over the variables of the two programs, and achieve the desired effect
by setting c ≡ c1; c2, ϕ̄ ≡ ϕ and ψ̄ ≡ ψ. This method, coined self-composition
by Barthe, D’Argenio and Rezk [4], is sound and relatively complete, but it is
also impractical [22]. In a recent article, Zaks and Pnueli [24] develop another
construction, called cross-product, that performs execution of c1 and c2 in lock-
step and use it for translation validation [25], a general method for proving the
correctness of compiler optimizations. Cross-products, when they exist, meet the
required property; however their existence is confined to structurally equivalent
programs and hence they cannot be used to validate loop optimizations that
modify the control flow of programs, nor to reason about 2-properties such as
non-interference, because such properties consider runs of the program that do
not follow the same control flow.

The challenge addressed in this paper is to provide a general notion of product
programs which allows transforming relational verification tasks into standard
ones, without the setbacks of cross-products or self-composition. In our setting,
a product between two programs c1 and c2 is a program c which combines syn-
chronous steps, in which instructions from c1 and c2 are executed in lockstep,
with asynchronous steps, in which instructions from c1 or c2 are executed sep-
arately. Products combine the best of cross-products and self-composition: the
ability of performing asynchronous steps recovers the flexibility and generality
of self-composition, and make them applicable to programs with different con-
trol structures, whereas the ability of performing synchronous steps is the key
to make the verification of c as effective as the verification of cross-products
and significantly easier than the verification of the programs obtained by self-
composition. Concretely, we demonstrate how product programs can be com-
bined with off-the-shelf verification tools to carry relational reasoning on a wide
range of examples, including: various forms of loop optimizations, static caching
for incremental computation, SSE transformations for increasing performance
on multi-core platforms, information flow and continuity analyses. All examples
have been formally verified using the Why framework with its SMT back-end;
in one case, involving complex summations on arrays, we used a combination of
the SMT back-end and the Coq proof assistant back-end—however it is conceiv-
able that the proof obligations could be discharged automatically by declaring
suitable axioms in the SMT solver.

Contents. The paper is organized as follows: Section 2 introduces the product
construction and shows the need of a generalization of cross-product and self-
composition. Section 3 defines product programs and shows how they enable
reducing relational verification to existing standard logics. Section 4 illustrates
the usefulness of our method through examples drawn from several settings
including non-interference and translation validation of loop optimizations [3].
In particular, we provide a formal proof of Static Caching [17], a challenging
optimization used for incremental computation e.g. in image processing or com-
putational geometry.

2 Motivating examples

Continuity is a relational property that measures the robustness of programs
under changes: informally, a program is continuous if small variations on its
inputs only causes small variations on its output. While program continuity is
formalized by a formula of the form ∀ ε>0.∃ δ>0. P , see e.g. [9], continuity can
be often derived from the stronger notion of 1-sensitivity, see e.g. [21]. Informally,
a program is 1-sensitive if it does not make the distance grow, i.e. the variation
of the outputs of two different runs is upper bounded by the variation of the
corresponding inputs.

Consider the standard bubble-sort algorithm shown at the left of Figure 1.
Suppose that instead of the expected array a the algorithm is fed with an array
a′ satisfying the following relation: |a[i]− a′[i]| < ε for all i in the range of a and
a′ and for an infinitesimally small positive value ε. Clearly, the permutations
performed by the sorting algorithm over a and a′ can differ, as the variation ε
may affect the validity of the guard a[j−1] > a[j] that triggers the permutations.
Fortunately, this small variation on the input data can at most cause a small
variation in the final result. Indeed, one can verify the validity of the following
relational judgment:

� {∀i. |a[i]−a′[i]|<ε} c∼ c′ {∀i. |a[i]−a′[i]|<ε}

where c stands for the sorting algorithm in Figure 1 and c′ for the result of sub-
stituting every variable v in c by its primed version v′. Instead of relying on a
special purpose logic to reason about program continuity, we suggest to construct
a product program that performs the execution steps of c and c′ synchronously.
Since c and c′ have the same structure, it is immediate to build the program
d, shown at the left of Figure 1, that weaves the instructions of c and c′. The
algorithm d simulates every pair of executions of c and c′ synchronously, cap-
turing all executions of c and c′. Notice that the program product synchronizes
the loops iterations of its components, as their loop guards are equivalent and
thus perform the same number of iterations. This is not the case with the con-
ditional statements inside the loop body, as the small variations on the contents
of the array a w.r.t. a′ may break the equivalence of the guards a[j−1]> a[j]
and a′[j′−1]>a′[j′].

One can use a standard program logic to verify the validity of the non re-
lational judgment � {∀i. |a[i]−a′[i]|< ε} d {∀i. |a[i]−a′[i]|< ε}. If the program
product is a correct representation of its components, the validity of this judg-
ment over d is enough to establish the validity of the relational judgment over c
and c′.

It is not difficult to build a program product from structurally equivalent
programs by a total synchronization of the loops, as in the example above.
Structural equivalence is, however, a significant constraint as it rules out many
interesting cases of relational reasoning, including the translation validation ex-
amples in Section 4. Consider the case of the loop pipelining optimization shown
in Figure 6. The source and transformed programs have a similar structure: a

Source code:

i:= 0;
while (i<N) do
j:=N−1;
while (j>i) do

if (a[j−1]>a[j]) then
swap(a, j, j−1);

j--
i++

Program product (simplified):

i:= 0; i′:= 0;
while (i<N) do
j:=N−1; j′:=N−1;
while (j>i) do

if (a[j−1]>a[j]) then
swap(a, j, j−1);

if (a′[j′−1]>a′[j′]) then
swap(a′, j′, j′−1);

j--; j′--
i++; i′++

Fig. 1. Continuity of bubble-sort algorithm

loop statement plus some initialization and clean-up code. However, both pro-
grams cannot be synchronized a priori, since the number of loop iterations in
the source and transformed program do not coincide. A more difficult situation
arises when verifying the correctness of static-caching, shown in Figure 11, since
it involves synchronizing two nested loops with different depths.

A first intuition on the construction of products from structurally dissimilar
components is shown in the following basic example (assume 0≤N):

Source code:

i:= 0;
while (i≤N) do
x += i;
i++

Transformed code:

j:= 1;
while (j≤N) do
y += j;
j++

Program product (simplified):

i:= 0; x += i; i++; j:= 1;
while (i≤N) do
y += j; j++;
x += i; i++;

To build the product program, the first loop iteration of the source code is un-
rolled before synchronizing the loop statements. This simple idea maximizes syn-
chronization instead of relying plainly on self-composition, avoiding a functional
interpretation of the product components. Indeed, a sequential composition
would require providing invariants of the form x=X+ i(i−1)

2 and y=Y+ j(j−1)
2 ,

respectively (under the preconditions x = X and y = Y). In contrast, by the
construction of the product, the trivial loop invariant i=j ∧x=y is sufficient to
verify that the two programs above satisfy the pre and post-relation x=y.

In the rest of the paper, we develop a more flexible notion of program prod-
ucts, extending the construction of products from components that are not struc-
turally equal or with a different number of loop iterations.

3 Program products

Our reduction of relational verification into standard verification relies on the
ability of constructing, for any pair of programs c1 and c2, a product program c
that simulates the execution steps of its constituents. We first introduce a basic

〈assert(b), σ〉 〈skip, σ〉
JbKσ

〈c1, σ〉 〈c′1, σ′〉
〈c1; c2, σ〉 〈c′1; c2, σ

′〉
〈c1, σ〉 〈skip, σ′〉
〈c1; c2, σ〉 〈c2, σ′〉

〈while b do c, σ〉 〈c; while b do c, σ〉
JbKσ

〈while b do c, σ〉 〈skip, σ〉
J¬bKσ

Fig. 2. Program semantics (excerpt)

program setting that will serve to formalize the ideas exposed in this article, and
then provide a formalization of product program.

3.1 Programming model

Commands are defined by the following grammar rule:

c ::= x:= e | a[e]:= e | skip | assert(b) | c; c | if b then c1 else c2 | while b do c

in which x ranges over a set of integer variables Vi, a ranges over a set of array
variables Va (we assume Vi ∩ Va = ∅ and let V denote Vi ∪ Va), and e ∈ AExp
and b ∈ BExp range over integer and boolean expressions. Execution states are
represented as S = (Vi ⇀ Z) × (Va ⇀ (Z ⇀ Z)). The semantics of integer
and boolean expressions are given by (JeK)e∈AExp : S → Z and (JbK)b∈BExp :
S → B, respectively. The semantics of commands is standard, deterministic, and
defined by a relation 〈c, σ〉 〈c′, σ′〉 in Figure 2, with 〈skip, σ〉 denoting final
configurations. In particular, notice that a statement of the form assert(b) blocks
a program execution if b is not satisfied. We let 〈c, σ〉 ⇓ σ′ denote 〈c, σ〉 ?

〈skip, σ′〉.
An assertion φ is a first-order formula with variables in V. We let JφK denote

the set of states satisfying φ. Finally, we let var(c)⊆V and var(φ)⊆V denote the
set of (free) variables of a command c and assertion φ, respectively.

In order to simplify the definition of valid relational judgment, we introduce
a notion of separable commands: two commands c1 and c2 are separable if they
have disjoint set of variables: var(c1)∩var(c2) = ∅. Two states are separable if
they have disjoint domains. We let µ1]µ2 denote the union of finite maps

(µ1]µ2)x =
{
µ1 x if x ∈ dom(µ1)
µ2 x if x ∈ dom(µ2)

and overload this notation for the union of separable states (µ, ν)] (µ′, ν′), de-
fined as (µ]µ′, ν] ν′). Under this separability assumption, one can identify asser-
tions as relations on states: (σ1, σ2)∈JφK iff σ1]σ2∈JφK. The formal statement
of valid relational specifications is then given by the following definition.

Definition 1. Two commands c1 and c2 satisfy the pre and post-relation ϕ and
ψ, denoted by the judgment � {ϕ} c1∼ c2 {ψ} if for all states σ1, σ2, σ

′
1, σ
′
2 s.t.

σ1]σ2 ∈ JϕK and 〈c1, σ1〉 ⇓ σ′1 and 〈c2, σ2〉 ⇓ σ′2, we have σ′1]σ′2 ∈ JψK.

Our goal is to reduce validity of relational judgments to validity of Hoare triples,
hence we also define the notion of valid Hoare triple. For technical reasons, we
adopt a stronger definition of validity, which requires that the command is non-
stuck w.r.t. the precondition of the triple, where a command c is ϕ-nonstuck if
its execution does not block under the precondition ϕ. That is, for all states σ, σ′

and command c′ 6= skip such that σ ∈ JϕK and 〈c, σ〉 ? 〈c′, σ′〉, there exists c′′

and σ′′ such that 〈c′, σ′〉 〈c′′, σ′′〉.

Definition 2. A triple {ϕ}c{ψ} is valid, denoted by the judgment � {ϕ} c {ψ},
if c is ϕ-nonstuck and for all σ, σ′∈S, σ∈JϕK and 〈c, σ〉 ⇓ σ′ imply σ′∈JψK.

Such a notion of validity can be established using an extension of Hoare logic
with the following rule to deal with assert statements:

` {b ∧ φ} assert(b) {φ}

3.2 Product construction

We start in this section with a set of rules appropriate for structurally equivalent
programs. Then, we extend the set of rules with a structural transformation to
deal with structurally dissimilar programs.

Figure 3 provides a set of rules to derive a product construction judgment
c1×c2 → c. The construction of products introduces assert statements to verify
that the resulting program simulates precisely the behavior of its components.
This validation constraints are interpreted as local assertions, which are dis-
charged during the program verification phase. For instance, in the rule that
synchronizes two loop statements, the insertion of the statement assert(b1 ⇔ b2)
just before the evaluation the loop guards b1 and b2 enforces that the number of
loop iterations coincide. The resulting product containing assert statements can
thus be verified with a standard logic. If a command c is the product of c1 and
c2, then the validity of a relational judgment between c1 and c2 can be deduced
from the validity of a standard judgment on c.

Proposition 1. For all statements c1 and c2 and pre and post-relations ϕ and
ψ, if c1×c2 → c and � {ϕ} c {ψ} then � {ϕ} c1∼ c2 {ψ}.

Proof. We prove by induction on the derivation of a judgment c1×c2 → c that
if 〈c1, σ1〉 ⇓ σ′1, 〈c2, σ2〉 ⇓ σ′2 and σ1]σ2 does not make c get stuck, then
〈c, σ1]σ2〉 ⇓ σ′1]σ′2. We consider here some selected cases.

Suppose that the last rule applied is

c1< c
′
1 c2< c

′
2 c′1×c′2 → c

c1×c2 → c

and assume 〈c1, σ1〉 ⇓ σ′1, 〈c2, σ2〉 ⇓ σ′2, and � {ϕ} c {ψ}. From the construction
of products, for all separable commands c1 and c2, if c does not get stuck with
initial state σ1]σ2 then neither c1 nor c2 gets stuck with initial states σ1 and σ2.

c1×c2 → c1; c2

c1×c2 → c c′1×c′2 → c′

(c1; c′1)×(c2; c′2)→ c; c′

c1×c2 → c

(while b1 do c1)×(while b2 do c2)→ assert(b1 ⇔ b2); while b1 do (c; assert(b1 ⇔ b2))

c1×c2 → c c′1×c′2 → c′

(if b1 then c1 else c′1)×(if b2 then c2 else c′2)→ assert(b1 ⇔ b2); if b1 then c else c′

c1×c→ c′1 c2×c→ c′2

(if b then c1 else c2)×c→ if b then c′1 else c′2

Fig. 3. Product construction rules

Then, since σ1]σ2 ∈ ϕ and � {ϕ} c {ψ}, and from the definition of refinement
we have 〈c′1, σ1〉 ⇓ σ′1 and 〈c′2, σ2〉 ⇓ σ′2. By I.H. we can conclude σ′1]σ′2 ∈ JψK.

Suppose that c1, c2, and c are of the form while b1 do c′1, while b2 do c′2, and

assert(b1 ⇔ b2); while b1 do (c′; assert(b1 ⇔ b2))

respectively, and the last rule applied is

c′1×c′2 → c′

c1×c2 → c

Consider a state σ1]σ2 ∈ JϕK such that 〈c1, σ1〉 ⇓ σ′1 and 〈c2, σ2〉 ⇓ σ′2. From
the hypothesis � {ϕ} c {ψ}, c is ϕ-nonstuck and, thus, from the semantics of the
assert statement we have that b1 and b2 are equivalent in σ1]σ2. We proceed
to prove by induction on 〈c1, σ1〉 ⇓ 〈skip, σ′1〉 that 〈c, σ1]σ2〉 ⇓ 〈skip, σ′1]σ′2〉.
The base case is trivial from the equivalence of b1 and b2 in σ1]σ2. Suppose
that b1 is valid in σ1 and we have µ1 such that 〈c′1, σ1〉 ⇓ µ1 and 〈c1, µ1〉 ⇓ σ′1.
Similarly, from the equivalence of b2, we have a state µ2 s.t. 〈c′2, σ2〉 ⇓ µ2 and
〈c2, µ2〉 ⇓ σ′2. From the inductive hypothesis on the derivation of c′1×c′2 → c′,
〈c′, σ1]σ2〉 ⇓ µ1]µ2. The execution of c from the initial state σ1]σ2 does not
get stuck, it must be also the case that b1 ⇔ b2 is valid in µ1]µ2. Since c does not
get stuck with µ1]µ2, one can apply I.H. to conclude that 〈c;µ1]µ2〉 ⇓ σ′1]σ′2.

Moreover, note that validity of Hoare triple on products ensures an additional
property, namely co-nonstuckness.

Proposition 2. For all c1, c2, c, ϕ and ψ such that c1×c2 → c and � {ϕ} c {ψ}
then c1 is ϕ1 non-stuck and c2 is ϕ2 non-stuck with ϕ1 = ∀x̄.ϕ, where x̄ = fv(c2)
and similarly for ϕ2.

A constraint of the product construction rules in Fig. 3 is that two loops with
non-equivalent guards must be sequentially composed. In the rest of this section
we propose a structural transformation that helps extending the application

` if b then c1 else c2< assert(b); c1 ` if b then c1 else c2< assert(¬b); c2

` while b do c< assert(b); c; while b do c

` while b do c<while b ∧ b′ do c; while b do c ` while b do c< assert(b); c; assert(¬b)

` c< c′

` while b do c<while b do c′
` c1< c′1 ` c2< c′2

` if b then c1 else c2< if b then c′1 else c′2

` c< c′ ` c′< c′′

` c< c′′ ` c< c
` c1< c′1 ` c2< c′2
` c1; c2< c

′
1; c′2

Fig. 4. Syntactic reduction rules

of relational verification by product construction to non-structurally equivalent
programs.

We characterize the structural transformations extending the construction of
products as a refinement relation, denoted with a judgment of the form c< c′.
It is a refinement relation in the sense that every execution of c is an execution
of c′ except when c′ gets stuck:

Definition 3. A command c′ is a refinement of c (c< c′), if for all states σ, σ′:

1. if 〈c′, σ〉 ⇓ σ′ then 〈c, σ〉 ⇓ σ′, and
2. if 〈c, σ〉 ⇓ σ′ then either the execution of c′ with initial state σ gets stuck, or
〈c′, σ〉 ⇓ σ′.

Relational verification results are preserved through refinement as described by
the following proposition:

Proposition 3. For all statements c1, c′1, c2 and c′2 such that c1< c′1 and c2< c′2
then if � {ϕ} c′1∼ c′2 {ψ} and c′1 is ϕ1 non-stuck and c′2 is ϕ2 non-stuck then
� {ϕ} c1∼ c2 {ψ}, where ϕ1 = ∀x̄.ϕ with x̄ = fv(c2) and ϕ2 = ∀x̄.ϕ with x̄ =
fv(c1)

Proof. Follows from the definition of relational valid judgement and valid refine-
ment.

We provide in Figure 4 a particular set of structural rules defining judgments
of the form ` c< c′. From the rules given in the figure, one can see that the
executions of c and c′ coincide for every initial state that makes the introduced
assert statements valid. One can prove that the judgment ` c< c′ establishes a
refinement relation:

Proposition 4. For all c and c′, if ` c< c′ then c< c′.

Example SMT/P.O.

Non-interference 42/42
Loop alignment 49/49
Loop pipelining 73/73
Loop unswitching 123/123
Code sinking 435/435
Static caching 162/176

Example SMT/P.O.’s

Loop reversal 13/13
Strength reduction 5/5
Loop interchange 36/37
Loop fission 15/15
Cyclic hashing 13/13
Bubble sort continuity 62/62

Table 1. Automatic validation of case studies

We enrich the set of rules defining the construction of products by adding
an extra rule that introduces a preliminary refinement transformation over the
product components:

c1< c
′
1 c2< c

′
2 c′1×c′2 → c

c1×c2 →< c

Proposition 1 remains valid for the extended proof system.
The following proposition reduces the problem of proving the validity of a re-

lational judgment into two steps: the construction of the corresponding program
product plus a standard verification over the program product.

Proposition 5. For all statements c1 and c2 and pre and post-relations ϕ and
ψ, if c1×c2 →< c and ` {ϕ} c {ψ} then � {ϕ} c1∼ c2 {ψ}.

Proof. Follows from Prop. 1, Prop. 2, Prop. 3 and soundness of Hoare Logic.

4 Case studies

This section illustrates the application of product construction for the verifi-
cation of relational properties, such as non-interference and the correctness of
program transformations. These program transformations include loop optimiza-
tions, static-caching, a complex optimization described later in this section, and
a transformation step used in the SSE-vectorization of a cyclic hashing algo-
rithm. For each of the examples in this section, a product construction has been
verified with the Why tool(and the Frama-C toolwith the Jessie plugin). As
shown in Table 1, most of the examples could be automatically verified: the col-
umn P.O. indicates the number of proof obligations generated, and the column
SMT those that have been automatically discharged by SMT solvers. For the
static-caching and loop interchange examples, the remaining proof obligations
have been discharged in the Coq proof assistant.

Logical verification of non-interference

Non-interference is a confidentiality policy defined in terms of two executions of
the same program. Given a program c and a set of public variables x1, . . . , xk,

{Pre : es=es′ ∧ ∀i : 0≤ i<N : ps[i].P ID=ps′[i].P ID∧
ps[i].JoinInd=ps′[i].JoinInd ∧ (ps[i].JoinInd⇒ ps[i].salary=ps′[i].salary)}
i:= 0; i′:= 0; assert(i<N ⇔ i′<N);
while (i<N) do

assert(ps[i].JoinInd⇔ ps′[i′].JoinInd);
if (ps[i].JoinInd) then
j:= 0; j′:= 0; assert(j<M ⇔ j′<M);
while (j<M) do

assert(ps[i].P ID=es[j].EID ⇔ ps′[i′].P ID=es′[j′].EID);
if (ps[i].P ID=es[j].EID) then
tab[i].employee:= es[j]; tab′[i′].employee:= es′[j];
tab[i].payroll:= ps[i]; tab′[i′].payroll:= ps′[i];

j++; j′++; assert(i<N ⇔ i′<N);
i++; i′++; assert(i<N ⇔ i′<N);

{Post : ∀i : 0≤ i<N : ps[i].JoinInd⇒ tab[i]= tab′[i]}

Fig. 5. Non-interference product

the property ensures that two terminating runs of c starting in states with equal
public variables, end in states with equal public variables:

〈c, σ1〉 σ2 ∧ 〈c, σ′1〉 σ′2 ∧
∧

x∈{x1,...,xk}

σ1x=σ′1x =⇒
∧

x∈{x1,...,xk}

σ2x=σ′2x.

(For simplicity, we express non-interference w.r.t. scalar variables, the extension
to array variables is immediate.) Non-interference can thus be formulated as a
relational judgment:

� {x1=x′1 ∧ .. ∧ xk=x′k} c∼ c′ {x1=x′1 ∧ .. ∧ xk=x′k}

where c′ is the result of replacing every variable v in c by v′.
We illustrate the application of relational verification by product construc-

tion for the verification of an example drawn from [12]. Figure 5 shows the
construction of the program product (the original program can be obtained by
slicing out the statements containing primed variables). This simple algorithm
merges a table containing personal information with a table containing salary
information. A special field JoinInd indicates whether the personal information
is private and should not be included as the result of the join operation.

The pre and postcondition provided in Figure 5 establish that the input data
marked as private does not interfere with the final result: if the values stored in
the input arrays coincide for the public indices (i.e., for i s.t. ps[i].JoindInd is
true), then the return data coincides at the public indices (we let a formula of
the form a= ā stand for ∀i∈ [0, N−1]. a[i]= ā[i].)

Self-composition is another method that embeds the verification of information-
flow policies in non-relational program logics, by reducing it to the logical verifi-
cation of sequential compositions of the form � {x1=x′1∧..∧xk=x′k} c; c′ {x1=x′1∧

.. ∧ xk=x′k}. This method based on sequential composition is not amenable for
automatic tools, as it requires providing and verifying an intermediate assertion
φ such that the judgments

� {x1 =x′1 ∧ . . . ∧ xk =x′k} c {φ} and � {φ} c′ {x1 =x′1 ∧ . . . ∧ xk =x′k}

hold. In practice, this is a significant obstacle, as it may require understanding
and verifying a functional specification for the program c. Terauchi and Aiken
propose an alternative program composition [22], that can be seen as a particular
instance of our product construction, defined in terms of an information-flow
type system.

Translation validation of loop optimizations

In this section we consider several non-trivial loop optimizations, and show how
they can be verified using product constructions.

Loop pipelining. Loop pipelining is a non-trivial optimization that reduces the
proximity of memory references inside a loop, in order to introduce parallelization
opportunities. Consider the simple example shown in Fig. 6 (drawn from [16].)
Assume a, b, and c are arrays of size N , with 2≤N .

The program product shown in Fig. 6 pairs the initialization statements
over ā[0], b̄[0], and ā[1] with the first and second loop iterations of the original
program. Similarly, the final assignments to b̄[N−2], c̄[N−2] and c̄[N−1] are
executed synchronously with the final loop iteration of the original loop. The
remaining N−2 loop iterations are synchronized together. In order to verify that
a= ā ∧ b= b̄ ∧ c= c̄ is a valid pre and post condition, we require a specification
that establishes the equalities in b and b̄ and c and c̄, except for the indices j and
j+1. In particular, the loop invariant must state that b[j+1] = b̄[j+1]+a[j+1],
c[j] = c̄[j]+b[j], and c[j+1] = c̄[j+1]+b[j+1], and b[i′] = b̄[i′] and c[i′] = c̄[i′] for
any other index i′.

Loop alignment. The goal of this transformation is to improve cache perfor-
mance by increasing the proximity of the memory locations accessed by a loop
iteration. Consider the optimization example shown in Fig. 7, and assume 1≤N .
The array b is accessed twice in the loop body: a write access to the position i,
and a read access to the position i−1. The optimization aligns the accesses of
the array b in the loop body to a same index i. Notice that if the values stored
by the array b are not needed after the loop execution, the occurrence of b[i] in
the loop body is replaced by a fresh scalar variable.

The product is shown in the same figure. The construction of the product
pairs the initialization statement d̄[1]:= b̄[0] of the transformed program with the
first loop iteration of the source program, and then pairs the remaining N−1
loop iterations.

Source program:
i:= 0;
while (i<N) do
a[i]++; b[i] += a[i];
c[i] += b[i]; i++

Transformed program:
j:= 0;
ā[0]++; b̄[0] += ā[0];
ā[1]++;
while (j<N−2) do
ā[j+2]++;
b̄[j+1] += ā[j+1];
c̄[j] += b̄[j]; j++

c̄[j] += b̄[j];
b̄[j+1] += ā[j+1];
c̄[j+1] += b̄[j+1]

Product program:

{a= ā ∧ b= b̄ ∧ c= c̄}
i:= 0; j:= 0; assert(i<N);
a[i]++; b[i] += a[i];
c[i] += b[i]; i++;
ā[0]++; b̄[0] += ā[0];
assert(i<N);
a[i]++; b[i] += a[i];
c[i] += b[i]; i++; ā[1]++;
assert(i<N ⇔ j<N−2);
while (i<N) do
a[i]++; b[i] += a[i]; c[i] += b[i]; i++
ā[j+2]++; b̄[j+1] += ā[j+1];
c̄[j] += b̄[j]; j++
assert(i<N ⇔ j<N−2);

c̄[j] += b̄[j]; b̄[j+1] += ā[j+1]; c̄[j+1] += b̄[j+1]

{a= ā ∧ b= b̄ ∧ c= c̄}

Fig. 6. Loop pipelining

The program product can be verified w.r.t. the pre and post conditions a=
ā ∧ b[0]= b̄[0] and d[1, N]= d̄[1, N]. A suitable loop invariant is

d[1, i)= d̄[1, i) ∧ b[j]=a[j] ∧ b̄[i]=b[i] ∧ i=j+1

The specification ensures that given equal input arrays a and b, the values stored
in the array d coincide after the execution of both product components. The
expression d[1, i) = d̄[1, i) means that the values of the arrays d and d̄ coincide
in the index range [1, i)—and similarly with the range [1, N].

Induction variable strength reduction. Program products provide a conve-
nient means to validate the correctness of optimizations that do not modify the
control-flow of programs, and simply affect their basic blocks, such as constant
propagation or common subexpression elimination. Fig. 8 shows the application
of strength reduction to a small fragment of code. In the figure, j is a derived
induction variable, defined as a linear function on the induction variable i. The
optimization replaces the assignment j:= i∗B+C by the contextually equiva-
lent and less costly statement j′+=B, swaps the assignments to x and j, and
adds an initialization j′:=C immediately before the loop header. The program
product that simulates the simultaneous execution of the original program and
its optimized version in shown at the right of Figure 8. In order to verify the
optimization correct, i.e., that x = x′ is an invariant of the product program,
we require the linear condition j′ = i′B+C as part of the loop invariant. The
compiler analyzer can provide such information as part of the loop invariant
specification, following the techniques suggested in [6].

Source program:
i:= 1;
while (i≤N) do
b[i]:= a[i];
d[i]:= b[i−1];
i++

Transformed program:
j:= 1; d̄[1]:= b̄[0];
while (j≤N−1) do
b̄[j]:= ā[j];
d̄[j+1]:= b̄[j]; j++;

b̄[N]:= ā[N]

Product program:

{a = ā ∧ b[0] = b̄[0]}
i:= 1; j:= 1;
assert(i≤N);
b[i]:= a[i]; d[i]:= b[i−1]; i++;
d̄[1]:= b̄[0];
assert(i≤N ⇔ j≤N−1);
while (i≤N) do
b[i]:= a[i]; d[i]:= b[i−1]; i++;
b̄[j]:= ā[j]; d̄[j+1]:= b̄[j]; j++;
assert(i≤N ⇔ j≤N−1);

b̄[N]:= ā[N]

{d[1, N] = d̄[1, N]}

Fig. 7. Loop alignment

Source code:

i:= 0;
while (i<N) do
j:= i∗B+C;
x += j; i++

Optimized code:

i′:= 0; j′:=C;
while (i′<N) do
x′ += j′;
j′ +=B; i′++

Program product:

i:= 0; i′:= 0; j′:=C;
while (i<N ∧ i′<N) do
j:= i∗B+C; x += j; i++
x′ += j′; j′ +=B; i′++

Fig. 8. Induction variable strength reduction

Loop unswitching. Loop unswitching consists of moving invariant conditional
branches outside of a loop. If a conditional statement depends on a guard that
is not modified by the loop body, the evaluation of the guard can be performed
before entering the loop. Figure 9 shows a simple example of loop unswitching,
drawn from [2]. In the source program, the value of the condition x<7 is invariant
to the loop, so the conditional statement is pushed outside of the loop in the
transformed program, and the loop body is replicated at each of the conditional
branches.

The construction of the product is shown at the right of Figure 9. The pro-
gram product is verified to satisfy the pre and post relation

∀i. 0≤ i<N =⇒ a[i]=A[i] ∧ b[i]=B[i] ∧ c[i]=C[i]

For this simple example, the same formula above has been used as the loop
invariant required by the verification tool.

Code Sinking. Code sinking is a program transformation that consists in mov-
ing code inside a loop statement. Its main goal is to transform imperfect nested
loops into perfect nests, which are amenable to more loop optimizations. Fig-
ure 10 shows an example of code sinking [1]. The original algorithm consists of

Source program:

i:= 0;
while (i<N) do
a[i]:= a[i]+k;
if (x<7) then
b[i]:= a[i]∗c[i]

else
b[i] := a[i−1]∗b[i−1];

i++

Transformed program:

if (y<7) then
j:= 0;
while (j<N) do
A[j]:=A[j]+k;
B[j]:=A[j]∗C[j];
j++

else
j:= 0;
while (j<N) do
A[j]:=A[j]+k;
B[j]:=A[j−1]∗B[j−1];
j++

Product program:

i:= 0;
if (y<7) then
j:= 0; assert(i<N ⇔ j<N);
while (i<N) do
A[j]:=A[j]+k; a[i]:= a[i]+k;
assert(x<7⇔ y<7);
if (x<7) then
b[i]:= a[i]∗c[i];
B[j]:=A[j]∗C[j];

else
b[i] := a[i−1]∗b[i−1];
B[j]:=A[j]∗C[j];

j++; i++; assert(i<N ⇔ j<N);
else
j:= 0; assert(i<N ⇔ j<N);
while (i<N) do
A[j]:=A[j]+k; a[i]:= a[i]+k;
assert(x<7⇔ y<7);
if (x<7) then
b[i]:= a[i]∗c[i];
B[j]:=A[j−1]∗B[j−1];

else
b[i] := a[i−1]∗b[i−1];
B[j]:=A[j−1]∗B[j−1];

i++; i++; assert(i<N ⇔ j<N);

Fig. 9. Loop unswitching

a main loop enclosed by initialization and final statements. In the transformed
program, such statements are pushed inside the loop, under appropriate guards
to ensure semantics preservation.

The product construction is shown at the right of Figure 10. It consists
basically on a preliminary step that unrolls the first and last iteration of the
source and transformed program, plus a basic loop synchronization. The program
product representing the simultaneous execution of the original and transformed
program can be easily verified to satisfy the following pre and post condition

i= i′ ∧max=max′ ∧maxi=maxi′ ∧ ∀i. 0≤ i≤N ⇒ a[i]=a′[i]

which entails the observational equivalence of both product components.

Static caching

In this section we turn our attention to static caching [17], an optimization that
has not been considered from the perspective of translation validation. To the
best of our knowledge, we provide the first formal validation of such optimization.

Source program:

max:= a[0];
maxi:= 0;
i:= 0;
while (i≤N) do

if (max<a[i]) then
max:= a[i]; maxi:= i;

i++;
t:= a[N];
a[N]:=max;
a[maxi]:= t;

Transformed program:

j:= 0;
while (j≤N) do

if (j=0) then
max′:= a[0]; maxi′:= 0;

if (max′<a′[j]) then
max′:= a′[j]; maxi′:= j;

if (j=N) then
t′:= a′[N];
a′[N]:=max′;
a′[maxi′]:= t′;

j++

Product program:

max:= a[0]; maxi:= 0;
i:= 0; j:= 0;
assert(i≤N);
if (max<a[i]) then max:= a[i]; maxi:= i;
i++;
assert(j≤N); assert(j = 0);
if (j=0) then max′:= a[0]; maxi′:= 0;
if (max′<a′[j]) then max′:= a′[j]; maxi′:= j;
assert(j 6=N);
assert(i≤N ∧ i 6= N ⇔ j≤N ∧ j 6=N);
while (i≤N ∧ i 6= N) do

assert(j 6=0);
if (max<a[i]) then max:= a[i]; maxi:= i;
if (max′<a′[j]) then max′:= a′[j]; maxi′:= j;
assert(j 6=N); j++; i++;

assert(i=N); assert(j=N); assert(j 6=0);
if (max<a[i]) then max:= a[i]; maxi:= i;
if (max′<a′[j]) then max′:= a′[j]; maxi′:= j;
i++;
assert(j=N);
t′:= a′[N]; a′[N]:=max′; a′[maxi′]:= t′;
j++;
t:= a[N]; a[N]:=max; a[maxi]:= t;

Fig. 10. Code sinking

Static caching removes redundant computations by exploiting memoized in-
termediate results. One of its applications is the row summation algorithm in
Fig. 11. The algorithm takes as input an N×L matrix a and returns an array
s of length N−M+1 (assume M≤N) such that s[i] =

∑M,L
i′,j′=i,0A[i′, j′], for all

i ∈ [0, N−M]. The original program performs a significant amount of redundant
computation. Let b[i] stand for

∑N
j=0A[i, j]. One can see that for all i, s[i] differs

from s[i+1] on the value b[i+M]−b[i]. The computations of the summations b[i′]
for i′∈[i+1, i+M−1] are thus redundant and can be removed. In the optimized
version of the algorithm, the array b of size N is used to store the intermediate
computation of row summations. The matrix summations are computed using
the computations saved in the array b, and then stored in the array t. As a result,
the transformed algorithm has a quadratic complexity, whereas the complexity
of the original algorithm is cubic.

Figure 12 shows the product of the original row-summation algorithm and
of its optimized version. The specification states that the output arrays s and t
coincide in the range [0, N−M] after the synchronous execution of the original
and optimized program. The correctness of the product w.r.t. its specification
can be verified by simple arithmetic reasoning.

Source program:

i1:= 0;
while (i1≤N−M) do
s[i1]:= 0; k1:= 0;
while (k1≤M−1) do
l1:= 0;
while (l1≤L−1) do
s[i1]+=a[i1+k1, l1]; l1++;

k1++;
i1++

Transformed program:

t[0]:= 0; k2:= 0;
while (k2≤M−1) do
b[k2]:= 0; l2:= 0;
while (l2≤L−1) do
b[k2] += a[k2, l2]; l2++;

t[0] += b[k2]; k2++;
i2:= 1;
while (i2≤N−M) do
b[i2+M−1]:= 0; l2:= 0;
while (l2≤L−1) do
b[i2+M−1]+=a[i2+M−1, l2]; l2++;

z:= b[i2+M−1]−b[i2−1];
t[i2]:= t[i2−1]+z; i2++

Fig. 11. Static caching: source and optimized code

5 Related work

Relational logics provide a syntactical counterpart to semantic relational meth-
ods, and can be used for similar purposes. To date, relational logics have been ap-
plied to prove compiler correctness, program equivalence [5], and non-interference:

Program equivalence. Relational Hoare Logics [7] (RHL) provides a set of elegant
and intuitive judgment rules to reason about program equivalence. The main
drawback of RHL’s core rules is that they can only account for structurally
equal programs. This restriction can be lifted by introducing one-sided rules
to deal with each particular case; such one-sided rules play a role similar to
simulation in our setting. There is a tight connection between relational Hoare
logics and products; the details will appear elsewhere. In an independent work,
Yang [23] proposes a similar relational framework for a heap-based language with
features drawn from separation logic. He applies his logic to the verification of
the Schorr-Waite graph marking algorithm. His work also lacks the ability to
cope with structurally dissimilar programs.

Compiler correctness. Translation validation [20, 25, 3] is a general method for
ensuring the correctness of optimizing compilation by means of a validator which
checks after each run of the compiler that the source and target programs are
semantically equivalent. Pnueli et al. define Translation Validation for optimiza-
tions defined in terms of instruction replacement, reordering of loop iterations,
and elimination of loop iterations, handled by the proof rules (Validate), (Per-
mute), and (Reduce), respectively. A drawback of the (Permute) rule is that
it can only deal with reordering optimizations, i.e., relating loops with the same
number of iterations, disabling the verification of non-consonant loop transfor-
mations, such as loop fusion and distribution. In a later work [14], the permute
rule is generalized to account for such optimizations.

Product program:

{true}
i1:= 0; assert(i1≤N−M); s[i1]:= 0; k1:= 0; t[0]:= 0; k2:= 0;
assert(k1≤M−1⇔ k2≤M−1);
while (k1≤M−1) {Inv1} do
l1:= 0; b[k2]:= 0; l2:= 0; assert(l1≤L−1⇔ l2≤L−1);
while (l1≤L−1) {Inv2} do
s[i1]+=a[i1+k1, l1]; l1++; b[k2] += a[k2, l2]; l2++;
assert(l1≤L−1⇔ l2≤L−1);

k1++; t[0] += b[k2]; k2++; assert(k1≤M−1⇔ k2≤M−1);
i1++; i2:= 1; assert(i1≤N−M ⇔ i2≤N−M);
while (i1≤N−M) {Inv3} do
b[i2+M−1]:= 0; l2:= 0;
while (l2≤L−1) {Inv4} do
b[i2+M−1]+=a[i2+M−1, l2]; l2++;

z:= b[i2+M−1]−b[i2−1]; t[i2]:= t[i2−1]+z; i2++;
s[i1]:= 0; k1:= 0;
while (k1≤M−1) {Inv5} do
l1:= 0;
while (l1≤L−1) {Inv6} do
s[i1]+=a[i1+k1, l1]; l1++;

k1++;
i1++
assert(i1≤N−M ⇔ i2≤N−M);

{∀ i∈ [0, N−M]. s[i]= t[i]}

Fig. 12. Static caching: Program product

In an independent line of work, Necula [19] develops a translation valida-
tion prototype based on GCC, in terms of a simulation relation between source
and transformed program points, and constrained to the validation of structure
preserving optimizations. Parametrized equivalence checking [16] lifts the limi-
tations of Necula’s relational validation approach to consonant optimizations by
combining it with Pnueli et al.’s Permute rule. However, they use a simplified
permute rule that restricts reasoning to loops in which every pair of iterations
is pair-wise independent, and thus can only account for basic transformations.

A combination of the work in [19] with the Permute rule is provided by
Kundu [16] et al. A current deficiency of the correlation inference is the inability
to account for asynchronous steps as presented in our work.

Program products. The notion of program product has been previously exploited
for the verification of non-interference properties and compiler correctness.

Self-composition [4, 11] provides a sound and complete means to capture
non-interference, by traditional verification of the sequential composition of a
program with a slightly modified version of itself. Terauchi and Aiken [22] sug-

Inv2
.
= i1=0 ∧ k1=k2 ∧ l1= l2 ∧ k1≤M ∧ l1≤L∧

s[i1]= t[0]+b[k1]=
Pk1−1

k′=0 b[k
′]+b[k1]∧

∀ k′∈[0, k1). b[k
′]=

PL−1
l′=0a[k′, l′] ∧ b[k1]=

Pl1−1
l′=0 a[k1, l

′]

Inv3
.
= i1 = i2 ∧ i1≤N−M+1 ∧ ∀ i′∈[0, i1)⇒ s[i′]= t[i′]=

PM−1
k′=0 b[k

′+i′]∧
∀ i′∈[0, i1+M−1). b[i′]=

PL−1
l′=0a[i′, l′]

Inv4
.
= Inv3 ∧ k1≤M ∧ l2≤L ∧ b[i2+M−1] =

Pl2−1
l′=0 a[i2+M−1, l′]∧
s[i1] =

Pk1−1
k′=0 b[k

′+i1]

Inv6
.
= Inv3 ∧ k1≤M ∧ l1≤L ∧ b[i2+M−1] =

PL−1
l′=0a[i2+M−1, l′]∧

s[i1] =
Pk1−1

k′=0 b[k
′+i1] +

Pl1−1
l′=0 a[i1+k1, l

′]

Fig. 13. Static caching: Loop invariants (excerpt)

gested to improve self-composition by a type directed transformation, a special
case of our product construction. Naumann [18] build on Terauchi and Aiken
results to encompass the verification of programs with dynamic allocation.

A notion of program products is present in the work of Pnueli and Zack, i.e.
cross-products [24], for establishing compiler correctness by reducing the rela-
tional verification of the original and transformed programs to the analysis of a
single program. The restriction of cross-products to structurally equal programs
limits the application of the framework to structure preserving transformations.

Other applications of relational methods include regression verification [13],
verification of 2-safety properties [22, 10], including determinism [8]. Further-
more, quantitative properties such as continuity [9] or indistinguishability [15]
appear as a natural generalization of 2-safety properties.

Clarkson and Schneider provide a general theory of hyperproperties, i.e. set
of properties such as non-interference or average response time, which cannot
be described as properties, i.e., set of traces. This theory establishes a general
classification of policies, but does not serve as a complete verification method.

6 Further work and conclusions

Relational reasoning provides a mean to enforce a wide range of correctness and
security properties, but have lacked methods and tools that are available for
traditional program logics. This paper develops a notion of product between
programs and reduces verification of relational properties between two programs
to verification of functional properties of their product. The notion of prod-
uct program is general and flexible, and overcomes the limitations of previous
approaches.

In this paper, we have concentrated on product programs in the setting of
a simple imperative language. However, our constructions extend to products
across programs written in two different languages, and also accommodate non-
determinism and dynamic allocation. Moreover, we have achieved greater gener-

ality by relying on alternative representations of programs, such as flow graphs
or their generalizations.

An important goal for further work is to develop methods and tools for
building products, and to connect them with off-the-shelf tools to provide a
complete framework for relational verification. In a separate line of work, we are
investigating applications of products to probabilistic programs, and intend to
apply the resulting formalism to provable security [5] and privacy [21].

References

1. T. S. Abdelrahman and R. Sawaya. Improving the structure of loop nests in
scientific programs. Comput. Syst. Sci. Eng., 19(1):11–25, 2004.

2. D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for high-
performance computing. ACM Comput. Surv., 26(4):345–420, 1994.

3. C. W. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and L. D. Zuck. Tvoc: A
translation validator for optimizing compilers. In K. Etessami and S. K. Rajamani,
editors, Computer Aided Verification, volume 3576 of Lecture Notes in Computer
Science, pages 291–295. Springer-Verlag, 2005.

4. G. Barthe, P. D’Argenio, and T. Rezk. Secure Information Flow by Self-
Composition. In R. Foccardi, editor, Computer Security Foundations Workshop,
pages 100–114. IEEE Press, 2004.

5. G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certification of code-
based cryptographic proofs. In Z. Shao and B. C. Pierce, editors, Principles of
Programming Languages, pages 90–101. ACM Press, 2009.

6. G. Barthe and C. Kunz. Certificate translation in abstract interpretation. In
S. Drossopoulou, editor, European Symposium on Programming, volume 4960 of
Lecture Notes in Computer Science, pages 368–382. Springer-Verlag, 2008.

7. N. Benton. Simple relational correctness proofs for static analyses and program
transformations. In N. D. Jones and X. Leroy, editors, Principles of Programming
Languages, pages 14–25. ACM Press, 2004.

8. J. Burnim and K. Sen. Asserting and checking determinism for multithreaded
programs. Communications of the ACM, 53(6):97–105, 2010.

9. S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity analysis of programs.
In Principles of Programming Languages, pages 57–70, 2010.

10. M. R. Clarkson and F. B. Schneider. Hyperproperties. In Computer Security
Foundations Symposium, pages 51–65, 2008.

11. A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis
of secure information flow. In D. Hutter and M. Ullmann, editors, Security in
Pervasive Computing, volume 3450 of Lecture Notes in Computer Science, pages
193–209. Springer-Verlag, 2005.

12. G. Dufay, A. P. Felty, and S. Matwin. Privacy-sensitive information flow with JML.
In R. Nieuwenhuis, editor, Conference on Automated Deduction, volume 3632 of
Lecture Notes in Computer Science, pages 116–130. Springer-Verlag, 2005.

13. B. Godlin and O. Strichman. Regression verification. In Design Meets Automation,
pages 466–471. ACM Press, 2009.

14. B. Goldberg, L. D. Zuck, and C. W. Barrett. Into the loops: Practical issues in
translation validation for optimizing compilers. Electr. Notes Theor. Comput. Sci.,
132(1):53–71, 2005.

15. O. Goldreich. Foundations of Cryptography. Cambridge University Press, 2001-
2004.

16. S. Kundu, Z. Tatlock, and S. Lerner. Proving optimizations correct using param-
eterized program equivalence. In Programming Languages Design and Implemen-
tation, pages 327–337, 2009.

17. Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static caching for incremental com-
putation. ACM Transactions on Programming Languages and Systems, 20(3):546–
585, 1998.

18. D. A. Naumann. From coupling relations to mated invariants for checking infor-
mation flow. In European Symposium On Research In Computer Security, number
4189 in Lecture Notes in Computer Science, pages 279–296. Springer-Verlag, 2006.

19. G. C. Necula. Translation validation for an optimizing compiler. ACM SIGPLAN
Notices, 35(5):83–94, 2000.

20. A. Pnueli, E. Singerman, and M. Siegel. Translation validation. In B. Steffen,
editor, Tools and Algorithms for the Construction and Analysis of Systems, volume
1384 of Lecture Notes in Computer Science, pages 151–166. Springer-Verlag, 1998.

21. J. Reed and B. C. Pierce. Distance makes the types grow stronger: A calculus
for differential privacy. In International Conference on Functional Programming,
2010. To appear.

22. T. Terauchi and A. Aiken. Secure information flow as a safety problem. In C. Han-
kin and I. Siveroni, editors, Static Analysis Symposium, volume 3672 of Lecture
Notes in Computer Science, pages 352–367. Springer-Verlag, 2005.

23. H. Yang. Relational separation logic. Theoretical Computer Science, 375(1-3):308–
334, 2007.

24. A. Zaks and A. Pnueli. Covac: Compiler validation by program analysis of the
cross-product. In Formal Methods, pages 35–51, 2008.

25. L. D. Zuck, A. Pnueli, and B. Goldberg. Voc: A methodology for the translation
validation of optimizing compilers. J. UCS, 9(3):223–247, 2003.

