Skip to main content

Revisiting the Impact of Traffic Engineering Techniques on the Internet’s Routing Table

  • Conference paper
Mobile Networks and Management (MONAMI 2010)

Abstract

This paper studies the effect of simple Traffic Engineering techniques on the size of the Internet’s default free routing table. Current best practises for traffic balancing in the Internet are based in disaggregating prefixes that cause an increase in size of the Internet’s core routing table. An algorithm to show the impact of these techniques on the growth of the routing table is proposed. This algorithm is applied on routing tables between January 2001 and December 2009 and the results are discussed. Finally an alternative architecture is proposed, which allows Traffic Engineering while keeping the Internet routing table size optimised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. YouTube Hijacking: A RIPE NCC RIS case study, http://www.ripe.net/news/study-youtube-hijacking.html

  2. INTERSECTION (INfrastructure for heTErogeneous, Resilient, SEcure, Complex, Tightly Inter-Operating Networks) (January 2008), http://www.intersection-project.eu/ (last visit June 25, 2010)

  3. Ballani, H., Francis, P., Cao, T., Wang, J.: Making routers last longer with ViAggre. In: NSDI 2009: Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation, pp. 453–466. USENIX Association, Berkeley (2009)

    Google Scholar 

  4. Green, B.R., Smith, P.: CISCO - ISP Essentials. Cisco Press (September 2002)

    Google Scholar 

  5. Cisco Systems Inc. Interworking technology handbook

    Google Scholar 

  6. Draves, R., King, C., Venkatachary, S., Zill, B.D.: Constructing optimal ip routing tables. In: Proc. IEEE INFOCOM, pp. 88–97 (1999)

    Google Scholar 

  7. Fall, K., Iannaccone, G., Ratnasamy, S., Godfrey, P.B.: Routing Tables: Is Smaller Really Much Better? In: Proceedings of Hotnets 2009. ACM, New York (2009)

    Google Scholar 

  8. Freedman, M.J., Vutukuru, M., Feamster, N., Balakrishnan, H.: Geographic locality of ip prefixes. In: IMC (2005)

    Google Scholar 

  9. Gredler, H., Goralski, W.: The Complete IS-IS Routing Protocol. In: Computer Science. Springer, London (2005)

    Google Scholar 

  10. Griffin, T.G., Wilfong, G.: An analysis of BGP convergence properties. In: Proc. of SIGCOMM 1999, pp. 277–288. ACM Press, New York (1999)

    Google Scholar 

  11. Halabi, S.: Internet Routing Architectures, 2nd edn. Cisco Press (2000)

    Google Scholar 

  12. Hawkinson, J., Bates, T.: Guidelines for creation, selection, and registration of an Autonomous System (AS). RFC 1930 (Best Current Practice) (March 1996)

    Google Scholar 

  13. Huston, G.: Analysing the Internet BGP Routing Table. The Internet Protocol Journal 4(1) (2001)

    Google Scholar 

  14. van Beijnum, I.: BGP - Building Reliable Networks with the Border Gateway Protocol. O’Reilly, Sebastopol (2002)

    Google Scholar 

  15. Kapela, A., Pilisov, A.: Stealing the Internet. DefCon August 16 (2008) (last visit, July 17, 2009)

    Google Scholar 

  16. Lad, M., Massey, D., Pei, D., Wu, Y., Zhang, B., Zhang, L.: Phas: A prefix hijack alert system (2006)

    Google Scholar 

  17. Li, T., Fernando, R., Abley, J.: The AS_PATHLIMIT Path Attribute (2001), http://tools.ietf.org/html/draft-ietf-idr-as-pathlimit-03 (last visit: January 17, 2010)

  18. Marques, P., Dupont, F.: Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing. RFC 2545 (Proposed Standard) (March 1999)

    Google Scholar 

  19. Muthukrishnan, K., Malis, A.: A Core MPLS IP VPN Architecture. RFC 2917 (Informational) (September 2000)

    Google Scholar 

  20. Networks, J.: Examine BGP Routes and Route Selection in Juniper routers (last visit December 12, 2009)

    Google Scholar 

  21. Rekhter, Y., Li, T., Hares, S.: A Border Gateway Protocol 4 (BGP-4). RFC 4271 (Draft Standard) (January 2006)

    Google Scholar 

  22. Suri, S., Sandholm, T., Warkhede, P.: Compressing two-dimensional routing tables. Algorithmica 25, 287–300 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Gutiérrez, P.A.A. (2011). Revisiting the Impact of Traffic Engineering Techniques on the Internet’s Routing Table. In: Pentikousis, K., Agüero, R., García-Arranz, M., Papavassiliou, S. (eds) Mobile Networks and Management. MONAMI 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21444-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21444-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21443-1

  • Online ISBN: 978-3-642-21444-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics