Skip to main content

Palindrome Pattern Matching

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6661))

Abstract

A palindrome is a string that reads the same forward and backward. For a string x, let Pals(x) be the set of all maximal palindromes of x, where each maximal palindrome in Pals(x) is encoded by a pair (c, r) of its center c and its radius r. Given a text t of length n and a pattern p of length m, the palindrome pattern matching problem is to compute all positions i of t such that Pals(p) = Pals(t[i:i + m − 1]). We present linear-time algorithms to solve this problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allouche, J.P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity. Theoretical Computer Science 292(1), 9–31 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anisiu, M.C., Anisiu, V., Kása, Z.: Total palindrome complexity of finite words. Discrete Mathematics 310(1), 109–114 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baker, B.S.: Parameterized pattern matching: Algorithms and applications. Journal of Computer and System Sciences 52(1), 28–42 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of infinite words. International Journal of Foundations of Computer Science 15(2), 293–306 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Tech. rep., DIGITAL System Research Center (1994)

    Google Scholar 

  6. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy. Theoretical Computer Science 255(1–2), 539–553 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. European Journal of Combinatorics 30(2), 510–531 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Groult, R., Prieur, É., Richomme, G.: Counting distinct palindromes in a word in linear time. Information Processing Letters 110(20), 908–912 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, New York (1997)

    Book  MATH  Google Scholar 

  10. Hsu, P.H., Chen, K.Y., Chao, K.M.: Finding all approximate gapped palindromes. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1084–1093. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. I, T., Inenaga, S., Bannai, H., Takeda, M.: Counting and verifying maximal palindromes. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 135–146. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theoretical Computer Science 410(51), 5365–5373 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Manacher, G.: A new linear-time “on-line” algorithm for finding the smallest initial palindrome of a string. Journal of the ACM 22(3), 346–351 (1975)

    Article  MATH  Google Scholar 

  14. Massé, A.B., Brlek, S., Frosini, A., Labbé, S., Rinaldi, S.: Reconstructing words from a fixed palindromic length sequence. Proc. TCS 2008. IFIP 273, 101–114 (2008)

    MathSciNet  Google Scholar 

  15. Morris, J.H., Pratt, V.R.: A linear pattern-matching algorithm. Tech. Rep. 40, University of California, Berkeley (1970)

    Google Scholar 

  16. Restivo, A., Rosone, G.: Burrows-Wheeler transform and palindromic richness. Theoretical Computer Science 410(30–32), 3018–3026 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

I., T., Inenaga, S., Takeda, M. (2011). Palindrome Pattern Matching. In: Giancarlo, R., Manzini, G. (eds) Combinatorial Pattern Matching. CPM 2011. Lecture Notes in Computer Science, vol 6661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21458-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21458-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21457-8

  • Online ISBN: 978-3-642-21458-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics