Skip to main content

Frequent Submap Discovery

  • Conference paper
Combinatorial Pattern Matching (CPM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6661))

Included in the following conference series:

Abstract

Combinatorial maps are nice data structures for modeling the topology of nD objects subdivided in cells (e.g., vertices, edges, faces, volumes, ...) by means of incidence and adjacency relationships between these cells. In particular, they can be used to model the topology of plane graphs. In this paper, we describe an algorithm, called mSpan, for extracting patterns which occur frequently in a database of maps. We experimentally compare mSpan with gSpan on a synthetic database of randomly generated 2D and 3D maps. We show that gSpan does not extract the same patterns, as it only considers adjacency relationships between cells. We also show that mSpan exhibits nicer scale-up properties when increasing map sizes or when decreasing frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Braquelaire, J.-P., Brun, L.: Image segmentation with topological maps and inter-pixel representation 9(1), 62–79 (March 1998)

    Google Scholar 

  2. Brisson, E.: Representing geometric structures in d dimensions: topology and order. In: SCG, Saarbrücken, Germany, pp. 218–227 (1989)

    Google Scholar 

  3. Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent subtree mining - an overview. Fundam. Inf. 66, 161–198 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Cori, R.: Un code pour les graphes planaires et ses applications. In: Astérisque, Soc. Math. de France, Paris, France, vol. 27 (1975)

    Google Scholar 

  5. Damiand, G.: Topological model for 3d image representation: Definition and incremental extraction algorithm. CVIU 109(3), 260–289 (2008)

    Google Scholar 

  6. Damiand, G., Bertrand, Y., Fiorio, C.: Topological model for two-dimensional image representation: definition and optimal extraction algorithm. CVIU 93(2), 111–154 (2004)

    Google Scholar 

  7. Damiand, G., De La Higuera, C., Janodet, J.-C., Samuel, E., Solnon, C.: Polynomial Algorithm for Submap Isomorphism: Application to searching patterns in images. In: GbR. LNCS, pp. 102–112. Springer, Heidelberg (2009)

    Google Scholar 

  8. Damiand, G., Solnon, C., De La Higuera, C., Janodet, J.-C., Samuel, E.: Polynomial Algorithms for Subisomorphism of nD Open Combinatorial Maps. In: Computer Vision and Image Understanding (CVIU) (December 2011)

    Google Scholar 

  9. Edmonds, J.: A combinatorial representation for polyhedral surfaces. Notices of the American Mathematical Society 7 (1960)

    Google Scholar 

  10. Gosselin, S., Damiand, G., Solnon, C.: Efficient search of combinatorial maps using signatures. Theoretical Computer Science 412(15), 1392–1405 (2011); Theoretical Computer Science Issues in Image Analysis and Processing

    Article  MathSciNet  MATH  Google Scholar 

  11. Horvath, T., Ramon, J., Wrobel, S.: Frequent subgraph mining in outerplanar graphs. In: KDD 2006, pp. 197–206 (2006)

    Google Scholar 

  12. Jacques, A.: Constellations et graphes topologiques. Combinatorial Theory and Applications 2, 657–673 (1970)

    MathSciNet  MATH  Google Scholar 

  13. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: IEEE International Conference on Data Mining, vol. 0, p. 313 (2001)

    Google Scholar 

  14. Lienhardt, P.: Subdivision of n-dimensional spaces and n-dimensional generalized maps. In: SCG, Saarbrücken, Germany, pp. 228–236 (1989)

    Google Scholar 

  15. Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. Computer-Aided Design 23(1), 59–82 (1991)

    Article  MATH  Google Scholar 

  16. Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. IJCGA 4(3), 275–324 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Poudret, M., Arnould, A., Bertrand, Y., Lienhardt, P.: Cartes combinatoires ouvertes. Research Notes 2007-1, Laboratoire SIC E.A. 4103 (October 2007)

    Google Scholar 

  18. Salzberg, S.L.: C4.5: Programs for machine learning by j. ross quinlan. In: Machine Learning 1994, vol. 16, pp. 235–240. Morgan Kaufmann Publishers, Inc., San Francisco (1993), doi:10.1007/BF00993309

    Google Scholar 

  19. Tutte, W.T.: A census of planar maps. Canad. J. Math. 15, 249–271 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM 2002, pages 721. IEEE Computer Society, Washington, DC (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gosselin, S., Damiand, G., Solnon, C. (2011). Frequent Submap Discovery. In: Giancarlo, R., Manzini, G. (eds) Combinatorial Pattern Matching. CPM 2011. Lecture Notes in Computer Science, vol 6661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21458-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21458-5_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21457-8

  • Online ISBN: 978-3-642-21458-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics