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Abstract. Object groups are collections of objects that perform col-
lective work. We study a calculus with object groups and develop a
technique for the deadlock analysis of such systems based on abstract
descriptions of method’s behaviours.

1 Introduction

Object groups are collections of objects that perform collective work. The group ab-
straction is an encapsulation mechanism that is convenient in distributed programming
in several circumstances. For example, in order to achieve continuous availability or
load balancing through replication, or for retrieval services of distributed data. In these
cases, in order to keep consistencies, the group abstraction must define suitable pro-
tocols to synchronize group members. As usual with synchronization protocols, it is
possible that object groups may manifest deadlocks, which are particularly hard to
discover in this context because of the two encapsulation levels of the systems (the
object and the group levels).

Following the practice to define lightweight fragments of languages that are suffi-
ciently small to ease proofs of basic properties, we define an object-oriented calculus
with group operations and develop a technique for the analysis of deadlocks. Our object-
oriented language, called FJg, is an imperative version of Featherweight Java [10] with
method invocations that are asynchronous and group-oriented primitives that are taken
from Creol [11] (cf. the JCoBoxes [20]).

In FJg, objects always belong to one group that is defined when they are created.
Groups consist of multiple tasks, which are the running methods of the objects therein.
Tasks are cooperatively scheduled, that is there is at most one task active at each time
per group and the active task explicitly returns the control in order to let other tasks
progress. Tasks are created by method invocation that are asynchronous in FJg: the
caller activity continues after the invocation and the called code runs on a different
task that may belong to a different group. The synchronization between the caller
and the called methods is performed when the result is strictly necessary [11, 24, 4].
Technically, the decoupling of method invocation and the returned value is realized
using future variables (see [7] and the references in there), which are pointers to values
that may be not available yet. Clearly, the access to values of future variables may
require waiting for the value to be returned.

In a model with object groups and cooperative scheduling, a typical deadlock sit-
uation occurs when two active tasks in different groups are waiting for each other to
return a value. This circular dependency may involve less or more than two tasks. For
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example, a case of circularity of size one is

Int fact(Int n){ if (n=0) then return 1 ;

else return n*(this!fact(n-1).get) }

The above FJg code defines the factorial function (for the sake of the example we
include primitive types Int and conditional into FJg syntax. See Section 2.1). The in-
vocation of this!fact(n) deadlocks on the recursive call this!fact(n-1) because the
caller does not explicitly release the group lock. The operation get is needed in order
to synchronously retrieve the value returned by the invocation.

We develop a technique for the analysis of deadlocks in FJg programs based on
contracts. Contracts are abstract descriptions of behaviours that retain the necessary
informations to detect deadlocks [13, 12]. For example, the contract of fact (assuming
it belongs to the class Ops) is G(){ Ops.factg: G() }. This contract declares that,
when fact is invoked on an object of a group G, then it will call recursively fact on an
object of the same group G without releasing the control – a group dependency. With
this contract, any invocation of fact is fated to deadlock because of the circularity
between G and itself (actually this.fact(0) never deadlocks, but the above contract
is not expressive enough to handle such cases).

In particular, we define an inference system for associating a contract to every
method of the program and to the expression to evaluate. Then we define a simple
algorithm – the dla algorithm – returning informations about group dependencies. The
presence of circularities in the result of dla reveals the possible presence of deadlocked
computations. Overall, our results show the possibility and the benefit of applying
techniques developed for process calculi to the area of object-oriented programming.

The paper is organized as follows. Section 2 defines FJg by introducing the main
ideas and presenting its syntax and operational semantics. Section 3 discusses few
sample programs in FJg and the deadlocks they manifest. Section 4 defines contracts
and the inference algorithm for deriving contracts of expressions and methods. Section 5
considers the problem of extracting dependencies from contracts, presents the algorithm
dla, and discusses its enhancements. Section 6 surveys related works, and we give
conclusions and indications of further work in Section 7.

Due to space limitations, the technical details are omitted. We refer the interested
reader to the full paper in the home-pages of the authors.

2 The calculus FJg

In FJg a program is a collection of class definitions plus an expression to evaluate. A
simple definition in FJg is the class C in Table 1. This program defines a class C with
a method m. When m is invoked, a new object of class C is created and returned. A
distinctive feature of FJg is that an object belongs to a unique group. In the above
case, the returned object belongs to a new group – created by the operator newg. If
the new object had to belong to the group of the caller method, then we would have
used the standard operation new.

Method invocations in FJg are asynchronous. For example, the class D in Table 1
defines an extension of C with method n. In order to emphasize that the semantics
of method invocation is not as usual, we use the exclamation mark (instead of the
dot notation). In FJg, when a method is invoked, the caller continues executing in
parallel with the callee without releasing its own group lock ; the callee gets the control
by acquiring the lock of its group when it is free. This guarantees that, at each point
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class C { C m() { return newg C() ;} }
class D extends C { C n(D c) { return (c!m()).get ;} }

Table 1. Simple classes in FJg

in time, at most one task may be active per group. The get operation in the code of
n constraints the method to wait for the return value of the callee before terminating
(and therefore releasing the group lock). As a consequence an expression as (newg

D())!n(newg D()).get is going to complete because the called method m in the body
of n belongs to a different group w.r.t. the one of n; on the contrary an expression as
(newg D())!n(new D()).get is going to produce a deadlock.

In FJg, it is also possible to wait for a result without keeping the group lock. This
is performed by the operation await that releases the group lock and leaves other
tasks the chance to perform their activities until the value of the called method is
produced. That is, x!m().await.get corresponds to a method invocation in standard
object-oriented languages.

The decoupling of method invocation and the returned value is realized in FJg by
using future types. In particular, if a method is declared to return a value of type C,
then its invocations return values of type Fut(C), rather than values of type C. This
means that the value is not available yet; when it will be, it is going to be of type C.
The operation get takes an expression of type Fut(C) and returns C (as the reader may
expect, await takes an expression of type Fut(C) and returns Fut(C)).

2.1 Syntax

The syntax of FJg uses four disjoint infinite sets of class names, ranged over by A, B,
C, · · · , field names, ranged over by f, g, · · · , method names, ranged over by m, n, · · · ,
and parameter names, ranged over by x, y, · · · . The special name this is assumed to
belong to the set of parameter names. We write C̄ as a shorthand for C1, · · · , Cn and
similarly for the other names. We abbreviate sequences of pairs as C1 f1, · · · , Cn fn
with C̄ f̄.

The abstract syntax of class declarations CL, method declarations M, and expressions
e of FJg is the following

CL ::= class C extends C {C̄ f̄; M̄}
M ::= C m (C̄ x̄){return e ; }
e ::= x | this.f | this.f = e | e!m(ē) | new C(ē) | e; e

| newg C(ē) | e.get | e.await

Sequences of field declarations C̄ f̄, method declarations M̄, and parameter declarations
C̄ x̄ are assumed to contain no duplicate names.

A program is a pair (ct, e), where the class table ct is a finite mapping from class
names to class declarations CL and e is an expression. In what follows we always assume
a fixed class table ct. According to the syntax, every class has a superclass declared
with extends. To avoid circularities, we assume a distinguished class name Object with
no field and method declarations whose definition does not appear in the class table.
As usual, class C {· · · } abbreviates class C extends Object {· · · }.

Let types T be either class names C or futures Fut(C). Let also fields(C), mtype(m, C),
and mbody(m, C) [10] be the standard FJ lookup functions that are reported in Table 2.
The class table satisfies the following well-formed conditions:
(i) Object /∈ dom(ct);
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Field lookup:

fields(Object) = •
ct(C) = class C extends D {C̄ f̄; M̄} fields(D) = C̄′ ḡ

fields(C) = C̄ f̄, C̄′ ḡ

Method type lookup:

ct(C) = class C extends D {C̄ f̄; M̄}
C′ m (C̄′ x̄){return e; } ∈ M̄

mtype(m, C) = C̄′ → C′

ct(C) = class C extends D {C̄ f̄; M̄}
m 6∈ M̄

mtype(m, C) = mtype(m, D)

Method body lookup:

ct(C) = class C extends D {C̄ f̄; M̄}
C′ m (C̄′ x̄){return e; } ∈ M̄

mbody(m, C) = x̄.e

ct(C) = class C extends D {C̄ f̄; M̄}
m 6∈ M̄

mbody(m, C) = mbody(m, D)

Heap lookup functions:

H(o) = (C, G, [f̄ : v̄])

class(H, o) = C group(H, o) = G field(H, o, fi) = vi

Table 2. Lookup auxiliary functions (• is the empty sequence)

(ii) for every C ∈ dom(ct), ct(C) = class C · · · ;
(iii) every class name occurring in ct belongs to dom(ct);
(iv) the least relation <: , called subtyping relation, over types T, closed by reflexivity

and transitivity and containing

C1 <: C2

Fut(C1) <: Fut(C2)

ct(C1) = class C1 extends C2 {· · · }
C1 <: C2

is antisymmetric;
(v) if ct(C) = class C extends D {· · · } and mtype(m, C) = C̄′ → C′ and mtype(m, D) =

D̄′ → D′ then C′ <: D′ and D̄′ <: C̄′.
It is worth to remark that future types never appear in FJg programs, where types

of fields and of methods are always classes. This restriction excludes either to store
future values in fields or to invoke methods with future values (that later on may be

2.2 Semantics

Below we use an infinite set of object names, ranged over by o, o′, · · · , an infinite set of
group names, ranged over by G, G′, · · · , and an infinite set of task names, ranged over
by t, t′, · · · . We assume that the set of group names has a distinguished element a,
associated to the expressions irrelevant for the deadlock analysis, such as this.f.

FJg has an operational semantics that is defined in terms of a transition relation
−→ between configurations H 
 S, where H is the heap and S is a set of tasks. The heap
maps (i) objects names o to tuples (C, G, [f̄ : v̄]) that record their class, their group, and
their fields’ values; (ii) group names G to either ⊥ or > that specify whether the group
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(Update)

H(o′) = (C, G, [f̄ : v̄])

H 
 t :>o E[o′.f = v] −→ H[o′ 7→ (C, G, [f̄ : v̄][f : v])] 
 t :>o E[v]

(Invk)

class(H, o′) = C mbody(m, C) = x̄.e t′ 6= t

H 
 t :>o E[o′!m(v̄)] −→ H 
 t :>o E[t′], t′ :⊥o′ e[o
′
/this][v̄/x̄]

(New)

group(H, o) = G fields(C) = T̄ f̄

o′ 6∈ dom(H)
H′ = H[o′ 7→ (C, G, [f̄ : v̄])]

H 
 t :>o E[new C(v̄)] −→ H′ 
 t :>o E[o′]

(Newg)

fields(C) = T̄ f̄ o′, G′ 6∈ dom(H)
H′ = H[o′ 7→ (C, G′, [f̄ : v̄])][G′ 7→ ⊥]

H 
 t :>o E[newg C(v̄)] −→ H′ 
 t :>o E[o′]

(Get)

H 
 t :>o E[t′.get], t′ :o′ v −→ H 
 t :>o E[v], t′ :o′ v

(AwaitT)

H 
 t :>o E[t′.await], t′ :o′ v −→ H 
 t :>o E[t′], t′ :o′ v

(AwaitF)

group(H, o) = G

H[G 7→ >] 
 t :>o E[t′.await] −→ H[G 7→ ⊥] 
 t :⊥o E[t′.await]

(Lock)

group(H, o) = G e 6= v

H[G 7→ ⊥] 
 t :⊥o e −→ H[G 7→ >] 
 t :>o e

(Release)

group(H, o) = G

H[G 7→ >] 
 t :>o v −→ H[G 7→ ⊥] 
 t :⊥o v

(Seq)

H 
 t :>o v; e −→ H 
 t :>o e

(Config)

H 
 S −→ H′ 
 S′

(names(S′) \ names(S)) ∩ names(S′′) = ∅

H 
 S, S′′ −→ H′ 
 S′,S′′

Table 3. The transition relation of FJg.

is unlocked or locked, respectively. We use the standard update operations on heaps
H[o 7→ (C, G, [f̄ : v̄])] and H[G 7→ l] and on fields [f̄ : v̄][f : v] with the usual meanings.
Tasks are tuples t :lo e, where t is the task name, o is the object of the task, l is either
> (if the task owns the group lock) or ⊥ (if not), and e is the expression to evaluate.
The superscript l is omitted when it is not relevant. In the semantic clauses, by abuse
of the notation, the syntactic category e also addresses values, ranged over by v, which
are either object or task names. The set of object and task names in e is returned by
the function names(e). The same function, when applied to a set of tasks S returns
the object, group, and task names in S. The operational semantics also uses

– the heap lookup functions class(H, o), group(H, o), and field(H, o, fi) that respec-
tively return the class, the group and the values of i-th field of o in H (see Table 2);

– evaluation contexts E whose syntax is:

E ::= [ ] | E!m(ē) | this.f = E | o!m(v̄,E, ē) | new C(v̄,E, ē)
| newg C(v̄,E, ē) | E.get | E.await | E; e

The preliminary notions are all in place for the definition of the transition relation
that is given in Table 3. It is worth to notice that, in every rule, a task moves if it
owns the lock of its group. Apart this detail, the operations of update, object creation,
and sequence are standard. We therefore focus on the operations about groups and
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futures. Rule (Invk) defines asynchronous method invocation, therefore the evaluation
produces a future reference t′ to the returned value, which may be retrieved by a get

operation if needed. Rule (Newg) defines newg C(v̄), which creates a new group G′ and
a new object o′ of that group with fields initialized to v̄. This object is returned and the
group G′ is unlocked – no task of its is running. It will be locked as soon as a method of
o′ is invoked – see (Lock). Rule (Release) models method termination that amounts
to store the returned value in the configuration and releasing the group lock. Rule
(Get) allows one to retrieve the value returned by a method. Rules (AwaitT) and
(AwaitF) model the await operation: if the task t′ is terminated – it is paired to
a value in the configuration – then await is unblocking; otherwise the group lock is
released and the task t is blocked. Rule (Config) has standard premises for avoiding
unwanted name matches when lifting local reductions to complete configurations.

The initial configuration of a program (ct, e) is H 
 t :>o e[o/this] where H = o 7→
(Object, G, [ ]), G 7→ > (following our previous agreement, the class table is implicit).

Example 1. As an example, we detail the evaluation of the expression (newg D())!n(newg

D()).get, where the class D is defined in Table 1.

H 
 t :>o (newg D())!n(newg D()).get

−→ H1 
 t :>o o1!n(newg D()).get (1)

−→ H2 
 t :>o o1!n(o2).get (2)

−→ H2 
 t :>o t1.get, t1 :⊥o1 o2!m().get (3)

−→ H2[G1 7→ >] 
 t :>o t1.get, t1 :>o1 o2!m().get (4)

−→ H2[G1 7→ >] 
 t :>o t1.get, t1 :>o1 t2.get, t2 :⊥o2 newg C() (5)

−→ H3 
 t :>o t1.get, t1 :>o1 t2.get , t2 :>o2 newg C() (6)

−→ H4 
 t :>o t1.get, t1 :>o1 t2.get , t2 :>o2 o3 (7)

−→ H4 
 t :>o t1.get, t1 :>o1 o3 , t2 :>o2 o3 (8)

where H = o 7→ (Object, G, [ ]), G 7→ > H1 = H[o1 7→ (D, G1, [ ]), G1 7→ ⊥]
H2 = H1[o2 7→ (D, G2, [ ]), G2 7→ ⊥] H3 = H2[G1 7→ >, G2 7→ >]
H4 = H3[o3 7→ (C, G3, [ ]), G3 7→ ⊥]

The reader may notice that, in the final configuration, the tasks t1 and t2 will terminate
one after the other by releasing all the group locks.

3 Deadlocks

We introduce our formal developments about deadlock analysis by discussing a couple
of expressions that manifest deadlocks. Let D be the class of Table 1 and consider
the expression (newg D())!n(new D()).get. This expression differs from the one of
Example 1 for the argument of the method (now it is new D(), before it was newg D()).
The computation of (newg D())!n(new D()).get is the same of the one in Example 1
till step (5), replacing the value of H2 with H1[o2 7→ (D, G1, [ ])] (o1 and o2 belong to
the same group G1). At step (5), the task t2 will indefinitely wait for getting the lock
of G1 since t1 will never release it.

Deadlocks may be difficult to discover when they are caused by schedulers’ choices.
For example, let D′ be the following extension of the class C in Table 1:

class D′ extends C { D′ n(D′ b, D′ c){ return b!p(c);c!p(b);this ;}
C p(D′ c){ return (c!m()).get ;} }
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and consider the expression (newg D′())!n(newg D′(),new D′()).get. The evalua-
tion of this expression yields the tasks t :⊥o o1, t1 :⊥o1 o1, t2 :⊥o2 o3!m().get, t3 :⊥o3
o2!m().get with o ∈ G, o1, o3 ∈ G1 and o2 ∈ G2. If t2 is completed before t3 grabs
the lock (or conversely) then no deadlock will be manifested. On the contrary, the
above tasks may evolve into t :⊥o o1, t1 :⊥o1 o1, t2 :>o2 t4.get, t3 :>o3 t5.get, t4 :⊥o3
newg C(), t5 :⊥o2 newg C() that is a deadlock because neither t4 nor t5 will have any
chance to progress.

4 Contracts in FJg

In the following we will consider plain FJg programs where methods never return fields
nor it is possible to invoke methods with fields in the subject part or in the object
part. For example, the expressions (this.f)!m() and x!n(this.f) are not admitted,
as well as a method declaration like C p(){ return this.f ; }. (The contract system
in Table 4 and 5 will ban not-plain programs.) This restriction simplifies the foregoing
formal developments about deadlock analysis; the impact of the restriction (and other
ones) on the analysis of deadlocks is discussed in Section 7.

The analysis of deadlocks in FJg uses abstract descriptions of behaviours, called con-
tracts, and an inference system for associating contracts to expressions (and methods).
(The algorithm taking contracts and returning details about deadlocks is postponed to
the next section.) Formally, contracts γ, γ′, · · · are terms defined by the rules:

γ ::= ε | C.m : G(Ḡ); γ | C.mg : G(Ḡ); γ | C.ma : G(Ḡ); γ

As usual, γ; ε = γ = ε; γ. When γ̄ is a tuple of contracts (γ1, · · · , γn), seq(γ̄) is
a shortening for the sequential composition γ1; · · · ; γn. The sequence γ collects the
method invocations inside expressions. In particular, the items of the sequence may
be empty, noted ε; or C.m : G(Ḡ), specifying that the method m of class C is going to
be invoked on an object of group G and with arguments of group Ḡ; or C.mg : G(Ḡ), a
method invocation followed by a get operation; or C.ma : G(Ḡ), a method invocation
followed by an await operation. For example, the contract C.m:G(); D.n:G′() defines
two method invocations on groups G and G′, respectively (methods carry no arguments).
The contract C.m:G(); D.ng:G′(); E.pa:G′′() defines three method invocations on
different groups; the second invocation is followed by a get and the third one by an
await.

Method contracts, ranged over by G, G′, · · · , are G(Ḡ){γ} G′, where G, Ḡ are pairwise
different group names – G(Ḡ) is the header –, G′ is the returned group, and γ is a
contract. A contract G(Ḡ){γ} G′ binds the group of the object this and the group of
the arguments of the method invocation in the sequence γ. The returned group G′

may belong to G, Ḡ or not, that is it may be a new group created by the method.
For example, let γ = C.m:G(); D.ng:G′(); E.pa:G′′() in (i) G(G′, G′′){γ} G′′ and (ii)
G(G′){γ} G′′. In case (i) every group name in γ is bound by names in the header. This
means that method invocations are bound to either the group name of the caller or to
group names of the arguments. This is not the case for (ii), where the third method
invocation in its body and the returned group address a group name that is unbound
by the header. This means that the method with contract (ii) is creating an object of
class E belonging to a new group – called G′′ in the body – and is performing the third
invocation to a method of this object.

Method contracts are quotiented by the least equivalence =α identifying two con-
tracts that are equivalent after an injective renaming of (free and bound) group names.
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(T-Var)

Γ ` x : Γ (x), ε

(T-Field)

Γ ` this : (C, G), ε D f ∈ fields(C)

Γ ` this.f : (D,a), ε
(T-Invk)

Γ ` e : (C, G), γ Γ ` ē : (D̄, Ḡ), γ̄ a /∈ GḠ

mtype(m, C) = C̄→ C′ D̄ <: C̄

Γ (C.m) = G′(Ḡ′)→ G′′ G′′′ = fresh(GḠ, G′′[GḠ/G′Ḡ′])

Γ ` e!m(ē) : (Fut(C′), G′′′), γ; (seq(γ̄)); C.m : G(Ḡ)

(T-New)

Γ ` this : (C, G), ε Γ ` ē : (C̄, Ḡ), γ̄
fields(C′) = C̄′ f̄′ C̄ <: C̄′

Γ ` new C′(ē) : (C′, G), (seq(γ̄))

(T-NewG)

Γ ` ē : (C̄, Ḡ), γ̄ G fresh
fields(C) = C̄′ f̄′ C̄ <: C̄′

Γ ` newg C(ē) : (C, G), (seq(γ̄))

(T-Get)

Γ ` e : (Fut(C), G), γ

Γ ` e.get : (C, G), γ G get

(T-Await)

Γ ` e : (Fut(C), G), γ

Γ ` e.await : (Fut(C), G), γ G await

(T-Update)

Γ ` this : (C, G), ε D f ∈ fields(C)
Γ ` e : (D′, G′), γ D′ <: D

Γ ` this.f = e : (D′, G′), γ

(T-Seq)

Γ ` e : (T, G), γ Γ ` e′ : (T′, G′), γ′

Γ ` e ; e′ : (T′, G′), γ; γ′

Table 4. Contract rules of FJg expressions

For example G(G′){C.m:G(); D.ng:G′(); E.pa:G′′()} G′ =α G1(G2){C.m:G1(); D.ng:G2();

E.pa:G′′()} G2. Additionally, since the occurrence of G′′ represents an unbound group,
writing G′′ or any other free group name is the same. That is G(G′){C.m:G(); D.ng:G′();

E.pa:G′′()} G′ =α G1(G2){C.m:G1(); D.ng:G2(); E.pa:G3()} G2.
Let Γ , called environment, be a map from either names to pairs (T, G) or class and

method names, i.e. C.m, to terms G(Ḡ) → G′, called group types, where G, Ḡ, G′ are all
different from a. The contract judgement for expressions has the following form and
meaning: Γ ` e : (T, G), γ means that the expression e has type T and group G and has
contract γ in the environment Γ .

Contract rules for expressions are presented in Tables 4 where,
– in rule (T-Invk) we use the operator fresh(Ḡ, G) that returns G if G ∈ Ḡ or a fresh

group name otherwise;
– in rules (T-Get) and (T-Await), we use the operator G defined as follows:

ε G await = ε
(γ; C.m G(Ḡ)) G await = γ; C.ma G(Ḡ) (γ; C.ma G(Ḡ)) G await = γ; C.ma G(Ḡ)

(γ; C.m G(Ḡ)) G get = γ; C.mg G(Ḡ) (γ; C.ma G(Ḡ)) G get = γ; C.ma G(Ḡ)

(the other combinations of get and await are forbidden by the contract system).
The rule (T-Field) associates the group a to the expression this.f, provided the field
f exists. This judgment, together with the premises of (T-Invk) and the assumption
that a does not appear in Γ (C.m), imply that subjects and objects of method invocations
cannot be expressions as this.f. Apart these constraint, the contract of e!m(ē) is as
expected, i.e. the sequence of the contract of e, plus the one of ē, with a tailing item
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Contractually correct method declaration and class declaration:

(T-Method)

mtype(m, C) = C̄′ → C′ mbody(m, C) = x̄.e
Ḡ, G fresh Γ + x̄ : (C̄′, Ḡ) + this : (C, G) ` e : (T′, G′), γ T′ <: C′

Γ (C.m) =α G(Ḡ)→ G′

Γ ; C ` C′ m (C̄ x̄){return e; } : G(Ḡ){γ} G′

Contractually correct class and program:

(T-Class)

Γ ; C ` M̄ : Ḡ
Γ ` class C extends D {C̄ f̄; M̄} : {mname(M̄) 7→ Ḡ}

(T-Program)

C ∈ dom(ct) implies Γ ` ct(C) : cct(C)
cct is ct consistent

G fresh Γ + this : (Object, G) ` e : (T, G), γ

` (ct, e) : cct, (T, G), γ

Table 5. Contract rules for method declarations and class declarations

C.m G(Ḡ). Rules (T-New) and (T-NewG) are almost the same, except the fact that the
latter one returns a fresh group name while the former one return the group of this.
The other rules are standard.

Let G(Ḡ) → G′ =α H(H̄) → H′ if and only if G(Ḡ){ε}G′ =α H(H̄){ε}H′. The contract
judgements for method declarations, class declarations and programs have the following
forms and meanings:

– Γ ; C ` D′ m (D̄ x̄){return e; } : G(Ḡ){γ} G′ means that the method D′ m (D̄ x̄){return e; }
has method contract G(Ḡ){γ} G′ in the class C and in the environment Γ ;

– Γ ` class C extends D {C̄ f̄; M̄} : {m̄ 7→ Ḡ} means that the class declaration C has
contract {m̄ 7→ Ḡ} in the environment Γ ;

– ` (ct, e) : cct, (T, G), γ means that the program (ct, e) has contract class table
cct and type/group/contract (T, G), γ, where a contract class table maps class
names to terms {m̄ : Ḡ}.

Table 5 reports the typing judgments for method and class declarations and for pro-
grams. We use the auxiliary function mname(M̄) that returns the sequence of method
names in M̄. We also write m ∈ ct(C) if ct(C) = class C extends D {C̄ f̄; M̄} and
m ∈ mname(M̄). Rule (T-Program) requires that if a subclass overrides a method
of a superclass then the two methods must have equal contract. This constraint is
expressed by the predicate cct is ct consistent defined as follows:

for every ct(C) = class C extends D {· · · } :
m ∈ ct(C) and m ∈ ct(D) implies cct(C)(m) =α cct(D)(m)

This consistency requirement may be definitely weakened: we defer to future works the
issue of studying a sub-contract relation that is correct with respect to class inheritance.
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The proof of correctness of the contract system in Tables 4 and 5 requires additional
rules that define the contract correctness of (runtime) configurations. These rules are:

(T-Task)

Γ ` this : (C, G), ε Γ ` t : (Fut(C), G′), ε

Γ ` t.get : (C, G′), (G, G′)

(T-GetR)

Γ ` e : (Fut(C), G), ε e 6= t

Γ ` e.get : (C, G), ε

(T-Configuration)

fields(C) = C̄ f̄

H(o) = (C, G, [f̄ : v̄]) implies Γ ` o : (C, G), ε and Γ ` v̄ : C̄′ and C̄′ <: C̄

t :o e ∈ S implies Γ ` t : (Fut(D), G′), ε and Γ ` e : (D, G′), γ and o ∈ dom(H)

Γ ` (H 
 S)

Rule (T-Task) define contract correctness of runtime expressions as t.get. The rule
uses contracts extended with terms (G, G′).γ. While rule (T-GetR) deals with the
expression t.await.get. It is worth to notice the absence of rules for the runtime ex-
pression t.await. In fact, the judgment of this expression follows by (T-Await) and
the definition of ε G await.

Theorem 1 (Subject reduction).
1. If ` (ct, e) : (cct, γ) then the initial configuration of (ct, e) is contractually cor-

rect. Namely, there is Γ such that Γ ` (H 
 t :>o e[o/this]), where Γ = o 7→
(Object, G), t 7→ (Fut(C), G) and H = o 7→ (Object, G, [ ]), G 7→ >.

2. Let Γ ` (H 
 S) and H 
 S −→ H′ 
 S′. Then there is Γ ′ such that Γ ′ ` (H′ 
 S′).

5 Deadlock analysis in FJg

The contract system in Tables 4 and 5 does not convey any information about dead-
locks: it only associates contracts to expressions (and methods). The point is that
contracts retain the necessary informations about deadlocks and the analysis may be
safely reduced to them, overlooking all the other details. We begin with the formal
definition of a deadlock.

Definition 1. A configuration H 
 S is deadlocked if there are ti, oi, Ei, and ei, with
1 ≤ i ≤ n+ k, such that n ≥ 1 and

– every 1 ≤ i ≤ n is ti :>oi Ei[t`i .get] with `i ∈ 1..n+ k and
– every n+1 ≤ j ≤ n+k is tj :⊥oj ej with group(H, oj) ∈ {group(H, o1), · · · , group(H, on)}.

A configuration H 
 S is deadlock-free if, for every H 
 S −→∗ H′ 
 S′, H′ 
 S′ is
not deadlocked. A program (ct, e) is deadlock-free if its initial configuration is deadlock-
free.

It is easy to verify that the programs discussed in Section 3 are not deadlock-
free. We observe that a configuration may have a blocked task without retaining any
deadlock. This is the case of the process C.mg G(), where C.m : G(){C.mg(G′)} G, that
produces an infinite chain of tasks ti :>oi ti+1.get. (The following dla algorithm will
reject this contract.)

We say that a configuration H 
 S has a group-dependency (G, G′) if S contains
either the tasks t :>o E[t′.get], t′ :o′ e, with t′ retaining or not its group lock, or the
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dla(∆cct, G, ε) = ∅
∆cct(C.m) = (G′′; Ḡ′′)G dla(∆cct, G, γ

′) = G

dla(∆cct, G, C.m G′(Ḡ′); γ′) = G[G
′; Ḡ′/G′′; Ḡ′′] ∪G

∆cct(C.m) = (G′′; Ḡ′′)G dla(∆cct, G, γ
′) = G

dla(∆cct, G, C.m
g G′(Ḡ′); γ′) = ({(G, G′)} ∪G[G

′; Ḡ′/G′′; Ḡ′′]);G

∆cct(C.m) = (G′′; Ḡ′′)G dla(∆cct, G, γ
′) = G

dla(∆cct, G, C.m
a G′(Ḡ′); γ′) = G[G

′; Ḡ′/G′′; Ḡ′′];G

Table 6. The algorithm dla

tasks t :⊥o e, t′ :>o′ E[t′′.get] (in both cases e is not a value) and G = group(H, o) and
G′ = group(H, o′). A configuration contains a group-circularity if the transitive closure
of its group-dependencies has a pair (G, G). The following statement asserts that a
group-circularity signals the presence of a sequence of tasks mutually waiting for the
release of the group lock of the other.

Proposition 1. A configuration is deadlocked if and only if it has a group-circularity.

In the following, sets of dependencies will be noted G,G′, · · · . Sequences G1; · · · ;Gn

are also used and shortened into G. Let G∪ (G1; · · · ;Gn) be G∪G1; · · · ;G∪Gn. A
set G is not circular, written G : not-circular, if the transitive closure of G does not
contain any pair (G, G). The definition of being not circular is extended to sequences
G1; · · · ;Gn, written G1; · · · ;Gn : not-circular, by constraining every Gi to be not
circular.

Dependencies between group names are extracted from contracts by the algorithm
dla defined in Table 6. This algorithm takes an abstract class contract table ∆cct, a
group name G and a contract γ and returns a sequence G. The abstract class contract
table ∆cct takes a pair class name C/method name m, written C.m, and returns an
abstract method contract (G, Ḡ)G. The map ∆cct is the least one such that

∆cct(C.m) = (G, Ḡ)
⋃

i∈1..n

Gi if and only if
cct(C)(m) = G(Ḡ){γ} G′
and dla(∆cct, G, γ) = G1; · · · ;Gn

We notice that ∆cct is well-defined because: (i) group names in cct are finitely many;
(ii) dla never introduces new group names; (iii) for every C.m, the element ∆cct(C.m)
is a finite lattice where elements have shape (G, Ḡ)G and where the greatest set G is
the cartesian product of group names in cct. Additionally, in order to augment the
precision of ∆cct, we assume that cct satisfies the constraint that, for every C.m and
D.n such that C.m 6= D.n, cct(C)(m) and cct(D)(n) have no group name in common
(both bound and free). (When this is not the case, sets in the codomain of ∆cct are
smaller, thus manifesting more circularities.)

Let us comment the rules of Table 6. The second rule of dla accounts for method
invocations C.m G′(Ḡ′); γ′. Since the code of C.m will run asynchronously with respect
to the continuation γ′, i.e. it may be executed at any stage of γ′, the rule adds the
pairs of C.m (stored in ∆cct(C.m)) to every set of the sequence corresponding to γ′.
The third rule of dla accounts for method invocations followed by get C.mg G′(Ḡ′); γ′.
Since the code of C.m will run before the continuation γ′, the rule prefixes the sequence
corresponding to γ′ with the pairs of C.m extended with (G, G′), where G is the group of
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the caller and G′ is the group of the called method. The rule for method invocations
followed by await is similar to the previous one, except that no pair is added because
the await operation releases the group lock of the caller.

A program (ct, e) is deadlock free if ` (ct, e) : cct, (T, G), γ and dla(∆cct, G, γ) :
not-circular, where G is a fresh group name, that is G does not clash with group
names in cct (group names in γ are either G or fresh as well – see Table 4).

Example 2. Let C and D be the classes of Table 1 and D′ be the class in Section 3. We
derive the following contract class table cct and abstract contract class table ∆cct:

C.m 7→ G(){ ε } G′

D.n 7→ E(E′){D.mg:E′()} E′′

D.m 7→ F(){ ε } F′

D′.n 7→ H(H′,H′′){D′.p:H′(H′′); D′.p:H′′(H′)} H

D′.p 7→ I(I′){ D′.mg: I′() } I′′

D′.m 7→ L() { ε } L′

C.m 7→ (G)∅
D.n 7→ (E,E′){ (E,E′) }
D.m 7→ (F)∅
D′.n 7→ (H,H′,H′′){(H′,H′′),(H′′,H′)}
D′.p 7→ (I,I′){ (I,I′) }
D′.m 7→ (L)∅

Now consider the expressions (newg D())!n(newg D()).get and (newg D())!n(new

D()).get of Section 2, which have contracts D.ng:L2(L3) and D.ng:L2(L1), respectively,
with L1 being the group of this. We obtain dla(∆cct, L1, D.n

g : L2(L3)) = {(L2, L3), (L1, L2)}
and dla(∆cct, L1, D.n

g : L2(L′)) = {(L2, L1), (L1, L2)} where the first set of dependen-
cies has no group-circularity – therefore (newg D())!n(newg D()).get is deadlock-free
– while the second has a group-circularity – (newg D())!n(new D()).get – may man-
ifest a deadlock, and indeed it does.

Next consider the expression (newg D′())!n(newg D′(),new D′()).get of Section 3,
which has contract D’.ng:L′′(L′′′,L′), being L′ the group of this. We obtain

dla(∆cct, L
′, (newg D′())!n(newg D′(),new D′()).get) = {(L′′′, L′), (L′, L′′′), (L′, L′′)}

where the set of dependencies manifests circularities. In fact, in Section 3, we observed
that the above expression may manifest a deadlock.

The dla algorithm is correct, that is, if its result contains a group-circularity, then
the evaluation of the analyzed expression may manifest a deadlock (vice versa, if there
is no group-circularity then no deadlock will be ever manifested). To demonstrate this
result we need to define the set of dependencies of configurations. Let Γ ` (H 
 S) and

dla(∆cct,H 
 S)
def
= {t : dla(∆cct, G, γ) | t :o e ∈ S and G = group(H, o)

and Γ ` e : (T, G′), γ }

(We are letting dla(∆cct, G, (G
′, G′′).γ) = {(G′, G′′)}; dla(∆cct, G, γ) and we remind

that contracts (G′, G′′).γ are used in the judgment of the runtime expressions t.get.)
Let G1; · · · ;Gm � G;G′1; · · · ;G′m whenever, for every i, Gi ⊆ G′i

Theorem 2. 1. If ` (ct, e) : (cct, γ) then dla(∆cct, G, γ) = dla(∆cct,H 
 t :>o
e[o/this]), where H = o 7→ (Object, G, [ ]), G 7→ >.

2. Let Γ ` (H 
 S) and H 
 S −→ H′ 
 S′. Then

i. t : G ∈ dla(∆cct,H 
 S) implies t : G
′ ∈ dla(∆cct,H

′ 
 S′) and G
′ � G;

ii. t′ : G′1; · · · ;G′n ∈ dla(∆cct,H
′ 
 S′) and there is no task t′ in S (t′ has been

created by the reduction) then there is t : G;G ∈ dla(∆cct,H 
 S) such that,
for every i, Gi ⊆ G.
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We say that {t1 : G1, · · · , tn : Gn} is not circular if, for every i: Gi : not-circular.
An immediate consequence of Theorem 2 is:

Corollary 1. If ` (ct, e) : (cct, γ) and dla(∆cct, G, γ) is not circular then (ct, e)
is deadlock-free.

The algorithm dla may be strengthened in several ways. Let us discuss this issue
with a couple of examples. Let C′ be the class

class C′ { C′ m(C′ b, C′ c){ return b!n(c).get ; c!n(b).get ;}
C′ n(D′ c){ return (c!p).get ;}
C′ p() { return new C′() ;} }

and let cct be its contract class table:

C′.m 7→ G(G′,G′′){C′.ng:G′(G′′) ; C′.ng:G′′(G′)} G′

C′.n 7→ F(F′){C′.pg:F′()} F′

C′.p 7→ E(){ε} E

The reader may verify that the expression (new C′())!m1(newg C′(), newg C′()) never
deadlocks. However, since ∆cct(C′.m) = (G, G′, G′′){(G, G′), (G′, G′′), (G, G′′), (G′′, G′)}, the
algorithm dla wrongly returns a circular set of dependencies. This problem is due to the
fact that ∆cct melds the group dependencies of different time points into a single set.
Had we preserved the temporal separation, that is {(G, G′), (G′, G′′)}; {(G, G′′), (G′′, G′)},
no group-circularity should have been manifested.

The second problem is due to the fact that free group names in method con-
tracts should be renamed each time the method is invoked (with fresh group names)
because two invocations of a same method create different group names. On the con-
trary, the algorithm dla always uses the same (free) name. This oversimplification
gives a wrong result in this case. Let C′′ be class C′′ { C′′ m(){ return (newg

C′′())!m().get ;} } (with cct(C′′.m) = G(){C′.mg : G′()}G′) and consider the ex-
pression (newg C′′())!m().get. The evaluation of this expression never manifests a
deadlock, however its contract is C′′.mg : F() and the algorithm dla will return the
set {(G, F), (F, G′), (G′, G′), }, which has a group-circularity. In the conclusions we will
discuss the techniques for reducing these errors.

6 Related works

The notion of grouping objects dates back at least to the mid 80’es with the works
of Yonezawa on the language ABCL/1 [9, 24]. Since then, several languages have a
notion of group for structuring systems, such as Eiffel// [4], Hybrid [18], and ASP [5].
A library for object groups has also been defined for CORBA [8]. In these proposals, a
single task is responsible for executing the code inside a group. Therefore it is difficult
to model behaviours such as waiting for messages without blocking the group for other
activities.

Our FJg calculus is inspired to the language Creol that proposes object groups,
called JCoBoxes, with multiple cooperatively scheduled tasks [11]. In particular FJg is
a subcalculus of JCoBoxc in [20], where the emphasis was the definition of the semantics
and the type system of the calculus and the implementation in Java.

The proposals for statically analyzing deadlocks are largely based on types [12, 22,
21, 23]. Some work also addresses deadlocks in object-oriented programs [1, 2]. In all
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these papers, a type system is defined that computes a partial order of the locks in a
program and a subject reduction theorem demonstrates that tasks follow this order. On
the contrary, our technique does not computes any ordering of locks, thus being more
flexible: a computation may acquire two locks in different order at different stages,
thus being correct in our case, but incorrect with the other techniques. A further
difference with the above works is that we use contracts that are terms in simple
(= with finite states) process algebras [13]. The use of simple process algebras to
describe (communication or synchronization) protocols is not new. This is the case of
the exchange patterns in ssdl [19], which are based on CSP [3] and the pi-calculus [15],
or of the behavioral types in [17] and [6], which use CCS [14]. We expect that finite
state abstract descriptions of behaviors can support techniques that are more powerful
than the one used in this contribution.

7 Conclusions

We have developed a technique for the deadlock analysis of object groups that is based
on abstract descriptions of methods behaviours.

This study can be extended in several directions. One direction is the total cov-
erage of the full language FJg. This is possible by using group records Θ,Θ′ = G[f1 :
Θ1, · · · , fk : Θk] instead of simple group names. Then contracts such as C.m : G(Ḡ)
become C.m : Θ(Θ1, · · · , Θn) and the rule (T-Field) is refined into

(T-Field-ref)

Γ ` this : (C, G[f̄ : Θ]), ε D f ∈ fields(C) f : Θ′ ∈ f̄ : Θ

Γ ` this.f : (D, Θ′), ε

The overall effect of this extension is to hinder the notation used in the paper, without
conveying any interesting difficulty (for this reason we have restricted our analysis to
a sublanguage). We claim that every statement for plain FJg in this paper also hold
for full FJg.

A different direction of research is the study of techniques for augmenting the
accuracy of the algorithm dla, which is imprecise at the moment. The intent is to use
finite state automata with name creation, such as those in [16], and modeling method
contracts in terms of finite automata and study deadlocks in sets of these automata.

Other directions address extensions of the language FJg. One of these extensions
is the removal of the constraint that future types cannot be used by programmers in
FJg. Future types augment the expressivity of the language. For example it is possible
to synchroniza several tasks and define livelocks:

class C { f: Fut(C) ; C m() { return this.f = this!n() ; new C() ;}
C n() { return this.f.get ; new C() ;} }

Another extension is about re-entrant method invocations (usually used for tail recur-
sions), which are synchronous invocations. Such extension requires revisions of seman-
tics rules, of the contract rules in Table 4, and of the dla algorithm.
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20. J. Schäfer and A. Poetzsch-Heffter. JCoBox: Generalizing active objects to con-
current components. In Proc. ECOOP’10, volume 6183 of LNCS, pages 275–299.
Springer, 2010.

21. K. Suenaga. Type-based deadlock-freedom verification for non-block-structured
lock primitives and mutable references. In Programming Languages and Systems,
volume 5356 of LNCS, pages 155–170. Springer, 2008.

22. K. Suenaga and N. Kobayashi. Type-based analysis of deadlock for a concurrent
calculus with interrupts. In Programming Languages and Systems, volume 4421 of
LNCS, pages 490–504. Springer, 2007.

23. V. T. Vasconcelos, F. Martins, and T. Cogumbreiro. Type inference for dead-
lock detection in a multithreaded polymorphic typed assembly language. In Proc.
PLACES’09, volume 17 of EPTCS, pages 95–109, 2009.

24. A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented concurrent program-
ming in ABCL/1. In Proc. OOPSLA’86, pages 258–268, 1986.

15


