Abstract
We consider reactive probabilistic labelled transition systems (rplts), a model where internal choices are refined by probabilistic choices. In this setting, we study the relationship between linear-time and may-testing semantics, where an angelic view of nondeterminism is taken. Building on the model of d-trees of Cleaveland et al., we first introduce a clean model of probabilistic may-testing, based on simple concepts from measure theory. In particular, we define a probability space where statements of the form “p may pass test o” naturally correspond to measurable events. We then obtain an observer-independent characterization of the may-testing preorder, based on comparing the probability of sets of traces, rather than of individual traces. This entails that may-testing is strictly finer than linear-time semantics. Next, we characterize the may-testing preorder in terms of the probability of satisfying safety properties, expressed as languages of infinite trees rather than traces. We then identify a significative subclass of rplts where linear and may-testing semantics do coincide: these are the separated rplts, where actions are partitioned into probabilistic and nondeterministic ones, and at each state only one type is available.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Acciai, L., Boreale, M., De Nicola, R.: Linear-Time and May-Testing in a Probabilistic Reactive Setting. Full version, http://rap.dsi.unifi.it/~acciai/papers/prob-may.pdf
Baier, C.: On the algorithmic verification of probabilistic systems. Universität Mannheim, Habilitation Thesis (1998)
Boreale, M., De Nicola, R., Pugliese, R.: Trace and Testing Equivalence in Asynchronous Processes. Information and Computation 172, 139–164 (2002)
Chatzikokolakis, K., Palamidessi, C.: Making random choices invisible to the scheduler. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 42–58. Springer, Heidelberg (2007)
Cleaveland, R., Iyer, S.P., Narasimha, M.: Probabilistic temporal logics via the modal mu-calculus. Theor. Comput. Sci. 342(2-3) (2005)
Deng, D., van Glabbeek, R., Hennessy, M., Morgan, C.: Testing finitary probabilistic processes. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 274–288. Springer, Heidelberg (2009)
Deng, D., van Glabbeek, R., Hennessy, M., Morgan, C.: Characterising testing preorders for finite probabilistic processes. Logical Methods in Computer Science 4(4), 1–33 (2008)
De Nicola, R.: Extensional equivalences for transition systems. Acta Informatica 24(2), 211–237 (1987)
De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Science 34, 83–133 (1984)
Ésik, Z., Kuich, W.: Formal Tree Series. Journal of Automata, Languages and Combinatorics 8(2), 219–285 (2003)
Georgievska, S., Andova, S.: Retaining the Probabilities in Probabilistic Testing Theory. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 79–93. Springer, Heidelberg (2010)
van Glabbeek, R., Smolka, S., Steffen, B., Tofts, C.: Reactive, generative, and stratified models of probabilistic processes. Information and Computation 121(1), 59–80 (1995)
van Glabbeek, R.J.: The linear time-branching time spectrum. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidelberg (1990)
Halmos, P.: Measure theory. Litton Educational Publishing, Inc. (1950)
Hansson, H., Jonsson, B.: A Calculus for Communicating Systems with Time and Probabilities. In: Proc. of IEEE Real-Time Systems Symposium, pp. 278–287 (1990)
Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of the ACM 32(1), 137–161 (1985)
Jonsson, B., Yi, W.: Testing Preorders for Probabilistic Processes can be Characterized by Simulations. TCS 282(1), 33–51 (2002)
Larsen, K.G., Skou, A.: Bisimulation through Probabilistic Testing. Inf. and Comp. 94(1), 1–28 (1991)
Segala, R.: Testing Probabilistic Automata. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996)
Tzeng, W.-G.: A polynomial time algorithm for the equivalence of probabilistic automata. SIAM Journal on Computing 21(2), 216–227 (1992)
Wang, Y., Larsen, K.G.: Testing Probabilistic and Nondeterministic Processes. In: Proc. of PSTV, IFIP Transactions C, vol. 8, pp. 47–61 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Acciai, L., Boreale, M., De Nicola, R. (2011). Linear-Time and May-Testing in a Probabilistic Reactive Setting. In: Bruni, R., Dingel, J. (eds) Formal Techniques for Distributed Systems. FMOODS FORTE 2011 2011. Lecture Notes in Computer Science, vol 6722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21461-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-21461-5_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21460-8
Online ISBN: 978-3-642-21461-5
eBook Packages: Computer ScienceComputer Science (R0)