Skip to main content

Linear-Time and May-Testing in a Probabilistic Reactive Setting

  • Conference paper
Formal Techniques for Distributed Systems (FMOODS 2011, FORTE 2011)

Abstract

We consider reactive probabilistic labelled transition systems (rplts), a model where internal choices are refined by probabilistic choices. In this setting, we study the relationship between linear-time and may-testing semantics, where an angelic view of nondeterminism is taken. Building on the model of d-trees of Cleaveland et al., we first introduce a clean model of probabilistic may-testing, based on simple concepts from measure theory. In particular, we define a probability space where statements of the form “p may pass test o” naturally correspond to measurable events. We then obtain an observer-independent characterization of the may-testing preorder, based on comparing the probability of sets of traces, rather than of individual traces. This entails that may-testing is strictly finer than linear-time semantics. Next, we characterize the may-testing preorder in terms of the probability of satisfying safety properties, expressed as languages of infinite trees rather than traces. We then identify a significative subclass of rplts where linear and may-testing semantics do coincide: these are the separated rplts, where actions are partitioned into probabilistic and nondeterministic ones, and at each state only one type is available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Acciai, L., Boreale, M., De Nicola, R.: Linear-Time and May-Testing in a Probabilistic Reactive Setting. Full version, http://rap.dsi.unifi.it/~acciai/papers/prob-may.pdf

  2. Baier, C.: On the algorithmic verification of probabilistic systems. Universität Mannheim, Habilitation Thesis (1998)

    Google Scholar 

  3. Boreale, M., De Nicola, R., Pugliese, R.: Trace and Testing Equivalence in Asynchronous Processes. Information and Computation 172, 139–164 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chatzikokolakis, K., Palamidessi, C.: Making random choices invisible to the scheduler. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 42–58. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Cleaveland, R., Iyer, S.P., Narasimha, M.: Probabilistic temporal logics via the modal mu-calculus. Theor. Comput. Sci. 342(2-3) (2005)

    Google Scholar 

  6. Deng, D., van Glabbeek, R., Hennessy, M., Morgan, C.: Testing finitary probabilistic processes. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 274–288. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Deng, D., van Glabbeek, R., Hennessy, M., Morgan, C.: Characterising testing preorders for finite probabilistic processes. Logical Methods in Computer Science 4(4), 1–33 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. De Nicola, R.: Extensional equivalences for transition systems. Acta Informatica 24(2), 211–237 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Science 34, 83–133 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ésik, Z., Kuich, W.: Formal Tree Series. Journal of Automata, Languages and Combinatorics 8(2), 219–285 (2003)

    MATH  MathSciNet  Google Scholar 

  11. Georgievska, S., Andova, S.: Retaining the Probabilities in Probabilistic Testing Theory. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 79–93. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. van Glabbeek, R., Smolka, S., Steffen, B., Tofts, C.: Reactive, generative, and stratified models of probabilistic processes. Information and Computation 121(1), 59–80 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. van Glabbeek, R.J.: The linear time-branching time spectrum. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidelberg (1990)

    Google Scholar 

  14. Halmos, P.: Measure theory. Litton Educational Publishing, Inc. (1950)

    Google Scholar 

  15. Hansson, H., Jonsson, B.: A Calculus for Communicating Systems with Time and Probabilities. In: Proc. of IEEE Real-Time Systems Symposium, pp. 278–287 (1990)

    Google Scholar 

  16. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of the ACM 32(1), 137–161 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jonsson, B., Yi, W.: Testing Preorders for Probabilistic Processes can be Characterized by Simulations. TCS 282(1), 33–51 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Larsen, K.G., Skou, A.: Bisimulation through Probabilistic Testing. Inf. and Comp. 94(1), 1–28 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Segala, R.: Testing Probabilistic Automata. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  20. Tzeng, W.-G.: A polynomial time algorithm for the equivalence of probabilistic automata. SIAM Journal on Computing 21(2), 216–227 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, Y., Larsen, K.G.: Testing Probabilistic and Nondeterministic Processes. In: Proc. of PSTV, IFIP Transactions C, vol. 8, pp. 47–61 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Acciai, L., Boreale, M., De Nicola, R. (2011). Linear-Time and May-Testing in a Probabilistic Reactive Setting. In: Bruni, R., Dingel, J. (eds) Formal Techniques for Distributed Systems. FMOODS FORTE 2011 2011. Lecture Notes in Computer Science, vol 6722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21461-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21461-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21460-8

  • Online ISBN: 978-3-642-21461-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics