Skip to main content

Processing Acyclic Data Structures Using Modified Self-Organizing Maps

  • Conference paper
Advances in Computational Intelligence (IWANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6692))

Included in the following conference series:

  • 1892 Accesses

Abstract

The paper deals with Acyclic Graph Data Structures (AGDS) and with model of a self-organizing map (SOM) that has been modified for processing of AGDS. The motivation was found in the real world of the Academic Information System (AIS) at P. J. Šafárik University in Košice. To the modified SOM Neural Network (SOM NN), there are added contexts and counters which are built in a training phase of the neural network. The trained SOM NN in active phase can compute more information which is used to built an answer to some questions. The working application was tested on the study programs in informatics, the test results are very closed to the real values.

Supported by the Slovak Scientific Grant Agency VEGA, Grant No. 1/0035/09.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Frasconi, P.M., Gori, M., Sperduti, A.: A general framework of adaptive processing of data structures. IEEE-NN 9(5), 768–786 (1998)

    Google Scholar 

  2. Hagenbuchner, M., Sperduti, A., Tsoi, A.C.: A self-organizing map for adaptive processing of structured data. IEEE Transactions on Neural Networks 14(3), 491–505 (2003)

    Article  MATH  Google Scholar 

  3. Hagenbuchner, M., Tsoi, A.C.: A supervised self-organizing map for structures. In: Proceedings IEEE International Joint Conference on Neural Networks, vol. 3, pp. 1923–1928. IEEE, Los Alamitos (2004)

    Google Scholar 

  4. Hagenbuchner, M., Tsoi, A.C., Sperduti, A.: A supervised self-organising map for structured data. In: Proc. WSOM 2001: Advances in Self-Organizing Maps, pp. 21–28. Springer, Heidelberg (2001)

    Google Scholar 

  5. Hammer, B., Micheli, A., Sperduti, A., Strickert, M.: A general framework for unsupervised processing of structured data. Neurocomputing (57), 3–35 (2004)

    Article  Google Scholar 

  6. Haykin, S.: Neural networks: a comprehensive foundation, 2nd edn. Prentice-Hall, New Jersey (1999)

    MATH  Google Scholar 

  7. Sperduti, A.: Tutorial on neurocomputing of structures. In: Cloete, I., Zurada, J.M. (eds.) Knowledge-Based Neurocomputing, pp. 117–152. MIT Press, Cambridge (2000)

    Google Scholar 

  8. Sperduti, A.: Neural networks for adaptive processing of structured data. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 5–12. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The Graph Neural Network Model. IEEE Transactions on Neural Networks 20(1), 61–80 (2009)

    Article  Google Scholar 

  10. Andrejková, G., Oravec, J.: Rekurzívne neurónové siete a dátové štruktúry (Recursive neural networks and data stuctures). In: Proceedings of International Congress IMEM 2009, Catholic University, Ružomberok (2009)

    Google Scholar 

  11. Vančo, P., Farkáš, I.: Experimental comparison of recursive self-organizing maps for processing tree-structured data. Neurocomputing 73(7-9), 1362–1375 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andrejková, G., Oravec, J. (2011). Processing Acyclic Data Structures Using Modified Self-Organizing Maps. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21498-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21498-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21497-4

  • Online ISBN: 978-3-642-21498-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics