Abstract
We present a testing methodology to find suitable test suites in environments where the application of each test to the implementation under test (IUT) might be very expensive in terms of cost or time. The method is general in the sense that it keeps very low the dependence on the underlying model (e.g. finite state machines, timed automata, Java programs, etc). A genetic algorithm (GA) is used to find optimal test suites according to cost and distinguishability criteria.
Work partially supported by project TIN2009-14312-C02-01.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Davis, L. (ed.): Handbook of genetic algorithms. Van Nostrand Reinhold, New York (1991)
Derderian, K., Hierons, R.M., Harman, M., Guo, Q.: Automated unique input output sequence generation for conformance testing of FSMs. The Computer Journal 49(3), 331–344 (2006)
Derderian, K., Merayo, M.G., Hierons, R.M., Núñez, M.: Aiding test case generation in temporally constrained state based systems using genetic algorithms. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 327–334. Springer, Heidelberg (2009)
Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004)
Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann, San Francisco (1991)
Howden, W.E.: Weak mutation testing and completeness of test sets. IEEE Transactions on Software Engineering 8, 371–379 (1982)
De Jong, K.A.: Evolutionary computation: a unified approach. MIT Press, Cambridge (2006)
Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 109–126. Springer, Heidelberg (2004)
Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines: A survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)
López, N., Núñez, M., Rodríguez, I.: Specification, testing and implementation relations for symbolic-probabilistic systems. Theoretical Computer Science 353(1-3), 228–248 (2006)
Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM testing. IEEE Transactions on Software Engineering 30(1), 29–42 (2004)
Rabanal, P., Rodríguez, I., Rubio, F.: Using river formation dynamics to design heuristic algorithms. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618, pp. 163–177. Springer, Heidelberg (2007)
Rabanal, P., Rodríguez, I., Rubio, F.: A formal approach to heuristically test restorable systems. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 292–306. Springer, Heidelberg (2009)
Rodríguez, I.: A general testability theory. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 572–586. Springer, Heidelberg (2009)
Rodríguez, I., Merayo, M.G., Núñez, M.: \({\mathcal HOTL}\): Hypotheses and observations testing logic. Journal of Logic and Algebraic Programming 74(2), 57–93 (2008)
Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Testing timed automata. Theoretical Computer Science 254(1-2), 225–257 (2001); Previously appeared as Technical Report CTIT-97-17, University of Twente (1997)
Tretmans, J.: A Formal Approach to Conformance Testing. PhD thesis, University of Twente, Enschede, The Netherlands (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alonso, L.M., Rabanal, P., Rodríguez, I. (2011). A Preliminary General Testing Method Based on Genetic Algorithms. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21498-1_45
Download citation
DOI: https://doi.org/10.1007/978-3-642-21498-1_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21497-4
Online ISBN: 978-3-642-21498-1
eBook Packages: Computer ScienceComputer Science (R0)