Skip to main content

Application of Independent Component Analysis for Evaluation of Ashlar Masonry Walls

  • Conference paper
Advances in Computational Intelligence (IWANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6692))

Included in the following conference series:

Abstract

This paper presents a novel application of Independent Component Analysis (ICA) to the evaluation of ashlar masonry walls inspected with Ground Penetrating Radar (GPR). ICA is used as preprocessor to eliminate the background from the backscattered signals. Thus, signal-to-noise ratio of the GPR signals is enhanced. Several experiments were made on scale models of historic ashlar masonry walls. These models were loaded with different weights, and the corresponding B-Scans were obtained. ICA shows the best performance to enhance the quality of the B-Scans compared with classical methods used in GPR signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Salazar, A., Unió, J.M., Serrano, A., Gosalbez, J.: Neural networks for defect detection in non-destructive evaluation by sonic signals. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 638–645. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Salazar, A., Vergara, L., Llinares, R.: Learning material defect patterns by separating mixtures of independent component analyzers from NDT sonic signals. Mechanical Systems and Signal processing 24(6), 1870–1886 (2010)

    Article  Google Scholar 

  3. Zhao, A., Jiang, Y., Wang, W.: Exploring Independent Component Analysis for GPR Signal Processing. In: Progress In Electromagnetics Research Symposium 2005, pp. 750–753. The Electromagnetics Academy, Cambridge (2005)

    Google Scholar 

  4. Abujarad, F., Omar, A.: Comparison of Independent-Component Analysis (ICA) Algorithms for GPR Detection of Non-Metallic Land Mines. In: Bruzzone, L. (ed.) Proceedings of SPIE Image and Signal Processing for Remote Sensing XII, vol. 6365, pp. 636516.1–636516.12. SPIE, Bellingham (2006)

    Google Scholar 

  5. Liu, J.X., Zhang, B., Wu, R.B.: GPR Ground Bounce Removal Methods Based on Blind Source Separation. In: Progress In Electromagnetics Research Symposium 2006, pp. 256–259. The Electromagnetics Academy, Cambridge (2006)

    Google Scholar 

  6. Verma, P.K., Gaikwad, A.N., Sigh, D., Nigam, M.J.: Analysis of Clutter Reduction Techniques for Through Wall Imaging in UWB Range. In: Progres. Electromagnetics Research B 2009, vol. 17, pp. 29–48. The Electromagnetics Academy, Cambridge (2009)

    Google Scholar 

  7. Salazar, A., Vergara, L., Serrano, A., Igual, J.: A General Procedure for Learning Mixtures of Independent Component Analyzers. Pattern Recognition 43(1), 69–85 (2010)

    Article  MATH  Google Scholar 

  8. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non Gaussian signals. IEE Proceedings-F 140(6), 362–370 (1993)

    Google Scholar 

  9. Ziehe, A., Muller, K.R.: TDSEP - An Efficient Algorithm for Blind Separation Using Time Structure. In: Proceedings of the Eighth International Conference on Artificial Neural Networks ICANN 1998, Perspectives in Neural Computing, pp. 675–680 (1998)

    Google Scholar 

  10. Reynolds, J.M.: An Introduction to Applied and Environmental Geophysics. Wiley, Chichester (1997)

    Google Scholar 

  11. Igual, J., Camacho, A., Vergara, L.: A blind source separation technique for extracting sinusoidal interferences in ultrasonic non-destructive testing. Journal of VLSI Signal Processing 38, 25–34 (2004)

    Article  MATH  Google Scholar 

  12. Salazar, A., Gosálbez, J., Igual, J., Llinares, R., Vergara, L.: Two applications of independent component analysis for non-destructive evaluation by ultrasounds. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 406–413. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Raghavan, R.S.: A Model for Spatially Correlated Radar Clutter. IEEE Trans. on Aerospace and Electronic Systems 27, 268–275 (1991)

    Article  Google Scholar 

  14. Salazar, A., Vergara, L.: ICA mixtures applied to ultrasonic nondestructive classification of archaeological ceramics. EURASIP Journal on Advances in Signal Processing, Article ID 125201, 11 (2010), doi:10.1155/2010/125201

    Google Scholar 

  15. Salazar, A., Vergara, L., Miralles, R.: On including sequential dependence in ICA mixture models. Signal Processing 90(7), 2314–2318 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salazar, A., Safont, G., Vergara, L. (2011). Application of Independent Component Analysis for Evaluation of Ashlar Masonry Walls. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21498-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21498-1_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21497-4

  • Online ISBN: 978-3-642-21498-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics