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Abstract. This paper presents a novel application of Independent Component Analysis (ICA) to the
evaluation of ashlar masonry walls inspected with Ground Penetrating Radar (GPR). ICA is used as
preprocessor to eliminate the background from the backscattered signals and thus signal-to-noise
ratio of the GPR signals is enhanced. Several experiments were made on scale models of historic
ashlar masonry walls. These models were loaded with different weights, and the corresponding B-
Scans were obtained. ICA shows the best performance to enhance the quality of the B-Scans
compared with classical methods used in GPR signal processing.

Keywords: ICA, GPR, Clutter, NDT

1 Introduction

Non-destructive testing (NDT) has been supported by computational intelligent methods such
as neural networks [1] and independent component analysis (ICA) [2]. The use of ICA for
Ground Penetrating Radar (GPR) signal processing has been recently studied in [3], [4], [5], [6].
Most of these works deal with the use of stepped-frequency GPR for the detection of non-
metallic land mines. In this paper, a novel application of ICA to Non-Destructive Testing (NDT)
of historical walls using GPR is presented. The overall objective is to reduce the clutter in the
captured GPR signal in order to enhance the radargrams of the wall internal structure. A
radargram is an image that represents values of the measured signals at different depths of
the material through the points of a trajectory used to examine the material. Each of the
signals collected is called an "A-Scan" and the map formed by the collection of all the A-Scans
in a trajectory is called a "B-Scan" (i.e., the radargram); see examples of B-Scan in Fig. 4.

Two scale models of historical ashlar masonry walls were analyzed: the first one was
homogeneous and the second one was previously mechanized to create imperfections in
specific locations. We will show the detection of these inhomogeneities inside the wall and the
characterization of the propagation of electromagnetic waves inside the masonry under
different loads. Fig. 1 shows an outline of the walls that depicts the following: ashlars, mortar
interfaces between ashlars, imperfections, and trajectories of the GPR data acquisition (7
columns and 4 rows). The walls were 2.87 m. x 2.2 m. x 0.204 m. (width, height and length).
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Fig. 1. Geometry of the wall under test. Ashlars, mortar interfaces and imperfections are depicted.

An ICA model for the received GPR signals that allows the background component from the
backscattered components to be separated is proposed. The background component was used
to assess the deformation of the wall under a load applied at the centre of the top of the wall
using hydraulic pressure. The backscattered components were analyzed to detect the
imperfections inside the wall. The algorithms employed for background estimation at the first
step of the GPR signal processing were the following: (i) ICA algorithms - Mixca [7], JADE [8],
TDSEP [9]; (ii) polynomial estimation; and (iii) spatial mean [10].

2 Statement of the ICA Problem

The final objective of this application is to obtain clear maps (B-Scans) of a wall inspected by
GPR that allow the imperfections inside the wall to be detected. Thus, we propose ICA for a
preprocessing step to separate the so-called background (reflections from the air-wall
interfaces) from the rest of the backscattered measured signal. The background is a kind of
interference that has to be removed in order to enhance the signal-to-noise ratio (SNR) of the
GPR signals [11]. Thus, we considered the measured signal as a mixture obtained from the
backscattering of the material microstructure plus the background.

The signal of backscattering measured by GPR, under assumptions on the wavelength and the
scattering size, can be modelled as a stochastic process. This model is composed of a
homogeneous non-dispersive media, and randomly distributed punctual scatters depicting the
composite nature of the received grain noise signal instead of a rigorous description of the
material microstructure. Thus, the backscattering model can be written as [12],
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where p is the location of the GPR antenna in the B-Scan. The random variable (r.v.) 4,,
is the scattering cross-section of the n th scatter in the location p. Ther.v. 7, is the delay
of the signal backscattered by the » th scatter and N(p) is the number of scatters
contributing from this position. The function f(¢) is the pulse emitted by the GPR, which is

defined as
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where wj, is the central frequency of the GPR antenna (in this application it was 1.6 GHz) and

b is a normalization factor.

The recorded signals can be modelled as the superposition of the backscattered signal plus
sinusoidal phenomena representing the background. The extraction of the background was
made using a sliding window of size 100 A-Scans with an overlap of 99 A-Scans. For each
window, a background was estimated using ICA. This can be written as,
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where M is the number of A-Scans, L is the number of windows, x,, (t) is the received

signal from the material at position k of the B-Scan estimated in the window /; s,,(f) is

the backscattering signal that depends on the material microstructure; and

e’ i =1...N—1,k=1...M,l=1...L are the sinusoidal sources to be analyzed with «

amplitude, w angular frequency, and 6 initial phase.

In the proposed application, the wall was scanned for 7 columns (vertical scan) and 4 rows
(horizontal scan), see Fig. 1. Due to constraints for the movement of the antenna survey
wheel, actual length of the acquisition trajectories was 1.7 m. and 2.1 m. for columns and rows
respectively. The scan density was 200 A-Scans per metre and 1024 samples were acquired for
each A-Scan. Thus, M =340 for vertical scanning and M =420 for horizontal scanning. This
number of scanning was adequate to include the anomalies of the material and background.
Background estimation is performed for each window and thus its performance is not affected
by the sampling configuration. On the contrary, B-Scan resolution depends on the number of
data available to build the wall image, even though this resolution can be enhanced by using
interpolated data. The suitability of this sampling configuration for the present application is
demonstrated in Section 4 (Results and Discussion).

Obviously, the estimated sinusoidal components have the same frequencies along the B-Scan,
with possibly changing amplitude and phase. From a statistical point of view, considering the
background as a sinusoid with deterministic but unknown amplitude and uniform random
phase, it is clearly guaranteed that the backscattering signal and the background are
statistically independent. Therefore, ICA algorithms can separate the background
(characterized for one sinusoidal source estimated by ICA) from the backscattering (the rest of
sources estimated by ICA) contribution.



3  Performance Analysis of Background Estimation Methods

Historic walls suffer degradation of its physical properties with the pass of time. This can
generate a strong clutter in the measured signals using GPR. For this work, two walls were only
available with particular SNR. Thus, we generated more cases of historic walls in different
conditions by adding K-distributed noise to the measured signals. K-distribution has been
demonstrated to be a good model for radar clutter [13]. The SNRs were 0, 2, 4, 6, 8, 10, 15, 20,
25, 30, 40, 50, 60 dB. For each different SNR, the background was estimated using the
following methods: ICA algorithms (JADE, Mixca, and TDSEP), polynomials, and spatial mean,

see Fig. 2.
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Fig. 2. Performance analysis of different methods for background estimation.

Fig. 2 shows the Mean Square Error (MSE) between the background of one of the original B-
scans and the background estimated with added K-distributed noise. JADE and Mixca achieve
the best results, i.e. the background is well-estimated even for low SNRs. ICA methods show
similar behaviours, improving the estimation with higher SNR, while classical methods
(polynomial, mean) do not improve significantly. The separation of the source corresponding
to the background with any small energy level is possible using ICA since it is based on
statistical independence of the components and not on the energy associated to each
frequency component. We selected the Mixca algorithm for the preprocessing step. This
algorithm implements non-parametric source density estimation, which has allowed its
application to different applications such as NDT [2][14] and biosignal processing [15]. Fig. 3
shows one of the sources (ICA component) obtained for the background.
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Fig. 3. Source signal corresponding to the background estimated in a single window.
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Fig. 4. B-Scan from GPR signals added with K-distributed noise for 0 dB SNR (upper graph); estimated background
component (lower left graph); backscattered components (lower right graph).

Fig. 4 shows the separation of the background component and the backscattered components
from the GPR measured signals with 0 dB SNR. The pulse generated by the GPR equipment
propagates from the antenna to the wall through an air interface. After this, the pulse travels
through the wall until the opposite side of the wall. Finally, it keeps propagating through free
air. The signal reflected from these two interfaces forms the background component. Grain
noise and imperfections in the wall's structure form the backscattered components. Note that
it is very difficult to obtain any information about the wall's condition from the graph in the
upper part of Fig. 4. However, some locations of interest are clearly depicted in the lower right
graph of Fig. 4. In the next section, we will show that there were imperfections in the wall
located in these locations.



4 Results and Discussion

The equipment employed consisted of a GPR system, SIR 3000 from Geophysical Survey
Systems Inc. We used a 1.6 GHz mounted on an encoder. The receiving antenna had a size of
3.8 cm. x 10 cm. x 16.5 cm that was adequate for both vertical and horizontal measures. The
configuration parameters used for data acquisition were: distance mode (200 scans per
meter), range of 10 ns and 1024 samples per scan. In order to obtain enhanced B-Scans of the
wall.

4.1  Analysis of the Homogeneous Wall (Background Component)

Fig. 5 shows the background signals of captured radargrams for the homogeneous ashlar
masonry wall, for two different loads. A variation of the propagation conditions of the wall is
shown. Note the way the opposite side of the wall seems to move away (see Fig. 5.b) that
indicates a loss in velocity of propagation inside the material. Thus, worsening of transmission
properties in the wall was produced by the weight load. This behaviour seemed consistent
with in situ measurements of the wall’s distortions, i.e. the wall suffered a strong buckling that
was emphasized on its uppermost part.
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Fig. 5. Background at the opposite side of the wall for different values of the load. Wall 1, row

6; a) no load; b) 80 metric tons (mt.) load.

4.2  Analysis of the Wall with Imperfections (Backscattered Components)

For the purpose of flaw detection, some algorithms were implemented in order to highlight
the discontinuities (typically due to changes in the material) in the radargrams [10]. These
methods, as seen on previous sections, were: background removal, depth resolution
enhancing, Kirchhoff migration and improvement of the contrast in the B-scan. Fig. 6 shows
the radargram obtained after this processing.

Fig. 6 corresponds to the radargram of row 2 with a load of 80 mt. A nook and a crack in the
wall can be visually detected. Note the difference in perceived amplitude between both flaws.
This can be explained by analysing the geometry of the flaws. The straight geometry of the
crack accentuates the reflection of the waves producing higher amplitude values in the
received signal. On the contrary, the nook is irregularly-shaped and rough-edged, which



attenuates the reflections of the incident waves in the flaw scatters. Thus, received signal
values for nook location are lower than those measured at the location of the crack.
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Fig. 6. Processed radargram with the imperfections highlighted.

The detection results were better for high load values. The reflection of incident waves from
the flaws is strengthened with the increase in compression, which allows a better definition of
the shapes of the imperfections in the radargrams.

5 Conclusion

The proposed method for the separation of background and backscattered components using
ICA has demonstrated accurate separation in GPR signals from historic ashlar masonry walls.
This has allowed enhanced images of the wall were obtained. The auscultation of historical
masonry walls with ground-penetrating radar (GPR) has proved to be effective for the
detection of imperfections and the characterization of walls under load. It was possible to
detect flaws with millimetre sizes and variations in the interfaces between ashlars and mortar
caused by the effect of the compression suffered under load.
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