Skip to main content

Nonlinear Prediction Based on Independent Component Analysis Mixture Modelling

  • Conference paper
Advances in Computational Intelligence (IWANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6692))

Included in the following conference series:

Abstract

This paper presents a new algorithm for nonlinear prediction based on independent component analysis mixture modelling (ICAMM). The data are considered from several mutually-exclusive classes which are generated by different ICA models. This strategy allows linear local projections that can be adapted to partial segments of a data set while maintaining generalization (capability for nonlinear modelling) given the mixture of several ICAs. The resulting algorithm is a general purpose technique that could be applied to time series prediction, to recover missing data in images, etc. The performance of the proposed method is demonstrated by simulations in comparison with several classical linear and nonlinear methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New York (2001)

    Book  Google Scholar 

  2. Lee, T.W., Lewicki, M.S., Sejnowski, T.J.: ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation. IEEE Trans. on Patt. Analysis and Mach. Intellig. 22(10), 1078–1089 (2000)

    Article  Google Scholar 

  3. Malaroiu, S., Kiviluoto, K., Oja, E.: ICA Preprocessing for Time Series Prediction. In: 2nd International Workshop on ICA and BSS (ICA 2000), pp. 453–457 (2000)

    Google Scholar 

  4. Pajunen, P.: Extensions of Linear Independent Component Analysis: Neural and Information-Theoretic Methods. Ph.D. Thesis, Helsinki University of Technology (1998)

    Google Scholar 

  5. Gorriz, J.M., Puntonet, C.G., Salmeron, G., Lang, E.W.: Time Series Prediction using ICA Algorithms. In: Proceedings of the 2nd IEEE International Workshop on Intelligent Data Acquisit. and Advanc. Comput. Systems: Technology and Applications, pp. 226–230 (2003)

    Google Scholar 

  6. Wang, C.Z., Tan, X.F., Chen, Y.W., Han, X.H., Ito, M., Nishikawa, I.: Independent component analysis-based prediction of O-Linked glycosylation sites in protein using multi-layered neural networks. In: IEEE 10th Internat. Conf. on Signal Processing, pp. 1–4 (2010)

    Google Scholar 

  7. Zhang, Y., Teng, Y., Zhang, Y.: Complex process quality prediction using modified kernel partial least squares. Chemical Engineering Science 65, 2153–2158 (2010)

    Article  Google Scholar 

  8. Salazar, A., Vergara, L., Serrano, A., Igual, J.: A general procedure for learning mixtures of independent component analyzers. Pattern Recognition 43(1), 69–85 (2010)

    Article  MATH  Google Scholar 

  9. Bersektas, D.: Nonlinear programming. Athena Scientific, Massachusetts (1999)

    Google Scholar 

  10. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non gaussian signals. IEE Proceedings-F 140(6), 362–370 (1993)

    Google Scholar 

  11. Salazar, A., Vergara, L., Llinares, R.: Learning material defect patterns by separating mixtures of independent component analyzers from NDT sonic signals. Mechanical Systems and Signal processing 24(6), 1870–1886 (2010)

    Article  Google Scholar 

  12. Salazar, A., Vergara, L.: ICA mixtures applied to ultrasonic nondestructive classification of archaeological ceramics. EURASIP Journal on Advances in Signal Processing, vol. 2010, p.11, Article ID 12520111 (2010), doi:10.1155/2010/125201

    Google Scholar 

  13. Salazar, A., Vergara, L., Miralles, R.: On including sequential dependence in ICA mixture models. Signal Processing 90(7), 2314–2318 (2010)

    Article  MATH  Google Scholar 

  14. Raghavan, R.S.: A Model for Spatially Correlated Radar Clutter. IEEE Trans. on Aerospace and Electronic Systems 27, 268–275 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Safont, G., Salazar, A., Vergara, L. (2011). Nonlinear Prediction Based on Independent Component Analysis Mixture Modelling. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21498-1_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21498-1_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21497-4

  • Online ISBN: 978-3-642-21498-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics