Abstract
This paper describes a methodology for the automatic classification of the eye lipid layer based on the categories enumerated by Guillon [1]. From a photography of the eye, the system detects the region of interest where the analysis will take place, extracts its low-level features, generates a feature vector that describes it and classifies the feature vector in one of the target categories. We have tested our methodology on a dataset composed of 105 images, with a classification rate of over 90%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Guillon, J.P.: Non-invasive Tearscope Plus routine for contact lens fitting. Contact Lens & Anterior Eye 21(Suppl. 1), S31–S40 (1998)
Craig, J.P., Tomlinson, A.: Importance of the lipid layer in human tear film stability and evaporation. Optometry and Vision Science 74(1), 8–13 (1997)
King-Smith, P.E., Fink, B.A., Fogt, N.: Three interferometric methods for measuring the thickness of layers of the tear film. Optometry and Vision Science 76(1), 19–32 (1999)
Goto, E., Dogru, M., Kojima, T., Tsubota, K.: Computer-synthesis of an interference color chart of human tear lipid layer, by a colorimetric approach. Investigative Ophthalmology & Visual Science 44(11), 4693–4697 (2003)
Calvo, D., Mosquera, A., Penas, M., Garcia Resua, C., Remeseiro, B.: Color texture analysis for tear film classification: a preliminary study. In: ICIAR 2010. LNCS, vol. 6112, pp. 388–397. Springer, Heidelberg (2010)
McLaren, K.: The development of the CIE 1976 (L*a*b*) uniform colour-space and colour-difference formula. Journal of the Society of Dyers and Colourists 92(9), 338–341 (1976)
Hering, E.: Outlines of a Theory of the Light Sense. Harvard University Press, Cambridge (1964)
Gonzalez, R., Woods, R.: Digital image processing. Pearson/Prentice Hall, Englewood Cliffs (2008)
Zhang, H.: The Optimality of Naive Bayes. In: FLAIRS Conference (2004)
Landwehr, N., Hall, M., Frank, E.: Logistic Model Trees. Machine Learning 59(1-2) (2005)
Drmota, M.: Random Trees. In: An interplay between combinatorics and probability. Springer, New York (2009)
Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
Chauvin, Y., Rumelhart, D.: Backpropagation: Theory, architecture and applications. Lawrence Erlbaum Associates, Inc., Publishers, Mahwah (1995)
Burges, C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)
Rodriguez, J., Perez, A., Lozano, J.: Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. on Pattern Analysis and Machine Intelligence 32(3), 569–575 (2010)
Chang, C., Lin, C.: LIBSVM: a library for support vector machines. Software (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. ACM SIGKDD Explorations Newsletter 11(1) (2009)
Lilliefors, H.W.: On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. Journal of the American Statistical Association 62(318), 399–402 (1967)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ramos, L., Penas, M., Remeseiro, B., Mosquera, A., Barreira, N., Yebra-Pimentel, E. (2011). Texture and Color Analysis for the Automatic Classification of the Eye Lipid Layer. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21498-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-21498-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21497-4
Online ISBN: 978-3-642-21498-1
eBook Packages: Computer ScienceComputer Science (R0)