Abstract
In this paper an architecture for an estimator of short-term wind farm power is proposed. The estimator is made up of a Linear Machine classifier and a set of k Multilayer Perceptrons, training each one for a specific subspace of the input space. The splitting of the input dataset into the k clusters is done using a k-means technique, obtaining the equivalent Linear Machine classifier from the cluster centroids. In order to assess the accuracy of the proposed estimator, some experiments will be carried out with actual data of wind speed and power of an experimental wind farm. We also compute the output of an ideal wind turbine to enrich the dataset and estimate the performance of the estimator on one isolated turbine.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., Feitosa, E.: A review on the young history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews 12(6), 1725–1744 (2008)
Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems (MCSS) 2(4), 303–314 (1989)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience, Hoboken (2000)
Focken, U., Lange, M., Monnich, K., Waldl, H., Beyer, H., Luig, A.: Short-term prediction of the aggregated power output of wind farms - a statistical analysis of the reduction of the prediction error by spatial smoothing. Journal of Wind Engineering and Industrial Aerodynamics 90, 231–246 (2002)
Foresee, F., Hagan, M.: Gauss-newton approximation to bayesian regularization. In: Proceedings of the 1997 International Joint Conference on Neural Networks (1997)
Hansen, J., Ruedy, R., Sato, M., Lo, K.: Global surface temperature change. Reviews of Geophysics 48, 1–29 (2010)
Haykin, S.: Neural Networks; A comprehensive Foundation, 1st edn. Macmillan, New York (1994)
Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2, 359–366 (1989), http://portal.acm.org/citation.cfm?id=70405.70408
Kusiak, A., Li, W.: Short-term prediction of wind power with clustering approach. Renewable Energy 35, 2362–2369 (2010)
Kusiak, A., Zheng, H., Song, Z.: Wind farm power prediction: A data-mining approach. Wind Energy 12, 275–293 (2009)
Li, S., Wunsch, D.C., Ohair, E.A., Giesselmann, M.G.: Using neural networks to estimate wind turbine power generation. IEEE Transactions on Energy Conversion 16(3), 276–282 (2001)
Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics 11, 431–441 (1963)
Méndez, J., Lorenzo, J., Hernández, M.: Experiments and reference models in training neural networks for short-term wind power forecasting in electricity markets. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 1288–1295. Springer, Heidelberg (2009)
Mohandes, M.A., Rehman, S., Halawani, T.O.: A neural networks approach for wind speed prediction. Renewable Energy 13(3), 345–354 (1998)
Nielsen, T.S., Joensen, A., Madsen, H., Landberg, L., Giebel, G.: A new reference for wind power forecasting. Wind Energy 1(1), 29–34 (1998)
Ramirez-Rosado, I.J., Fernandez-Jimenez, L.A., Monteiro, C., Sousa, J., Bessa, R.: Comparison of two new short-term wind-power forecasting systems. Renewable Energy 34(7), 1848–1854 (2009)
Sánchez, I.: Short-term prediction of wind energy production. International Journal of Forecasting 22, 43–56 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lorenzo, J., Méndez, J., Castrillón, M., Hernández, D. (2011). Short-Term Wind Power Forecast Based on Cluster Analysis and Artificial Neural Networks. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21501-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-21501-8_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21500-1
Online ISBN: 978-3-642-21501-8
eBook Packages: Computer ScienceComputer Science (R0)