Skip to main content

Auditory Brain-Computer Interfaces for Complete Locked-In Patients

  • Conference paper
Advances in Computational Intelligence (IWANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6691))

Included in the following conference series:

Abstract

Brain-computer interfaces (BCIs) are intended for people unable to do any muscular movement such as complete locked-in patients. Most of the BCIs make use of visual interaction with the user, either in form of stimulation or biofeedback. However, visual BCIs challenge the ultimate use of BCIs because they require the subjects to gaze, explore and coordinate the eyes using their muscles, thus ruling out complete locked-in patients. Despite auditory BCIs overcome the problem of the visuals, there are not many examples of them in the BCI literature. In this paper we review the research and main contributions to auditory BCIs, and compare them with visual BCIs, especially to communicate with complete locked-in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolpaw, J.R., et al.: Brain–Computer Interface Technology: A Review of the First International Meeting. IEEE Transactions On Rehabilitation Engineering 8(2), 164–173 (2000)

    Article  Google Scholar 

  2. Muller-Putzy, G.R., Pfurtscheller, G.: Control of an Electrical Prosthesis With an SSVEP-Based BCI. IEEE Transactions on Biomedical Engineering 55(1), 361–364 (2008)

    Article  Google Scholar 

  3. Bakardjian, H., Tanaka, T., Cichocki, A.: Optimization of SSVEP brain responses with application to eight-command Brain–Computer Interface. Neuroscience Letters 469(1), 34–38 (2010)

    Article  Google Scholar 

  4. Shyu, K., Lee, P., Liu, Y.: Dual-frequency steady-state visual evoked potential for brain computer interface. Neuroscience Letters 483(1), 28–31 (2010)

    Article  Google Scholar 

  5. Lopez-Gordo, M.A., Prieto, A., Pelayo, F., Morillas, C.: Use of Phase in Brain–Computer Interfaces based on Steady-State Visual Evoked Potentials. Neural Processing Letters 32(1), 1–9 (2010)

    Article  Google Scholar 

  6. Wang, Y., Gao, X., Hong, B., Jia, C., Gao, S.: Brain-Computer Interfaces Based on Visual Evoked Potentials. IEEE Engineering in Medicine and Biology Magazine 27(5), 64–71 (2008)

    Article  Google Scholar 

  7. Ikegami, S., Takano, K., Saeki, N., Kansaku, K.: Operation of a P300-based brain-computer interface by individuals with cervical spinal cord injury. Clinical Neurophysiology (2010)

    Google Scholar 

  8. Kleih, S., Nijboer, F., Halder, S., Kübler, A.: Motivation modulates the P300 amplitude during brain–computer interface use. Clinical Neurophysiology 121(7), 1023–1031 (2010)

    Article  Google Scholar 

  9. Klobassa, D., et al.: Toward a high-throughput auditory P300-based brain–computer interface. Clinical Neurophysiology 120(7), 1252–1261 (2009)

    Article  Google Scholar 

  10. Halder, S., et al.: An auditory oddball brain–computer interface for binary choices. Clinical Neurophysiology 121(4), 516–523 (2010)

    Article  Google Scholar 

  11. Kansaku, K., Hata, N., Takano, K.: My thoughts through a robot’s eyes: An augmented reality-brain–machine interface. Neuroscience Research 66(2), 219–222 (2010)

    Article  Google Scholar 

  12. Ron-Angeviny, R., Diaz-Estrella, A.: Brain–computer interface: Changes in performance using virtual reality techniques. Neuroscience Letters (2008)

    Google Scholar 

  13. Brunner, P., Joshi, S., Briskin, S., Wolpaw, J.R., Bischof, H., Schalk, G.: Does the ‘P300’ speller depend on eye gaze? Journal of Neural Engineering 7(5), 056013 (2010)

    Article  Google Scholar 

  14. Lopez-Gordo, M.A., Pelayo, F., Prieto, A.: A high performance SSVEP-BCI without gazing. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–5 (2010)

    Google Scholar 

  15. Allison, B.Z., McFarland, D.J., Schalk, G., Zheng, S.D., Jackson, M.M., Wolpaw, J.R.: Towards an independent brain–computer interface using steady state visual evoked potentials. Clinical Neurophysiology 119(2), 399–408 (2008)

    Article  Google Scholar 

  16. Gao, X., Xu, D., Cheng, M., Gao, S.: A BCI-Based Environmental Controller for the Motion-Disabled. IEEE Transactions On Neural Systems And Rehabilitation Engineering 11, 137–140 (2003)

    Article  Google Scholar 

  17. Nijboer, F.: An auditory brain–computer interface (BCI). Journal of Neuroscience Methods 167(1), 43–50 (2008)

    Article  Google Scholar 

  18. Furdea, A., et al.: An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology 46(3), 617–625 (2009)

    Article  Google Scholar 

  19. Lopez-Gordo, M.A., Fernandez, E., Romero, S., Pelayo, F.: A Brain-computer interface Based on Natural Speech. under revision

    Google Scholar 

  20. Meyer, J.E., Robert, R.J., Bayles, J.D., Volkert, K., Evitts, P.E.: Dichotic listening: expanded norms and clinical application. Archives of Clinical Neuropsychology 17, 79–90 (2002)

    Article  Google Scholar 

  21. Cabrera, A.F., Dremstrup, K.: Auditory and spatial navigation imagery in Brain–Computer Interface using optimized wavelets. Journal of Neuroscience Methods 174(1), 135–146 (2008)

    Article  Google Scholar 

  22. Murguialday, A.R., et al.: Transition from the locked in to the completely locked-in state: A physiological analysis. Clinical Neurophysiology (2010)

    Google Scholar 

  23. Owen, A.M., Schiff, N.D., Laureys, S.: A new era of coma and consciousness science. Progress in Brain Research 177, 399–411 (2009)

    Article  Google Scholar 

  24. Coleman, M.R., et al.: Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain 130(10), 2494–2507 (2007)

    Article  Google Scholar 

  25. Laureys, S., Perrin, F., Bredart, S.: Self-consciousness in non-communicative patients. Consciousness and Cognition 16(3), 722–741 (2007)

    Article  Google Scholar 

  26. Boly, M., et al.: When thoughts become action: An fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. NeuroImage 36(3), 979–992 (2007)

    Article  Google Scholar 

  27. Owen, A.M.: Detecting Awareness in the Vegetative State. Science 313(5792), 1402–1402 (2006)

    Article  Google Scholar 

  28. Owen, A.M., Coleman, M.R.: Detecting Awareness in the Vegetative State. Annals of the New York Academy of Sciences 1129(1), 130–138 (2008)

    Article  Google Scholar 

  29. Kübler, A.: Brain–Computer Interfaces for Communication in Paralysed Patients and Implications for Disorders of Consciousness. In: Laureys, S., Tononi, G. (eds.) The Neurology of Consciousness, p. 440. Elsevier, Amsterdam (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lopez-Gordo, M.A., Ron-Angevin, R., Pelayo Valle, F. (2011). Auditory Brain-Computer Interfaces for Complete Locked-In Patients. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21501-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21501-8_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21500-1

  • Online ISBN: 978-3-642-21501-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics