Skip to main content

Chemical Signaling as a Useful Metaphor for Resource Management

  • Conference paper
Advances in Computational Intelligence (IWANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6691))

Included in the following conference series:

  • 2236 Accesses

Abstract

Declarative logic programs have proved useful for resource management problems since the early 80’s. However the complexity of such programs is in a direct exponential relationship with the growth in the number of resources and users. We provide a simple, easy to implement, methodology for mathematically representing requests over resources inspired by the chemical signaling model of neural networks. Our resource management model uses substructural logic in its novel incarnation, HYPROLOG, to provide a connectionist neural network representation in which requests for resources are mapped to signals triggered and consumed by resource requesters and resource consumers respectively. Through this connectionist representation model, we achieve high level of expressivity while making the model directly executable. We exemplify the power of our model through representing a concrete temporal resource scheduling information system and then apply it to some real world mathematical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdennadher, S.: University Course Timetabling Using Constraint Handling Rules. Applied Artificial Intelligence 14(4), 311–325 (2000)

    Article  Google Scholar 

  2. Azevedo, F., Barahona, P.M., Frangouli, H., Harmandas, V., Lajos, G., Burke, E., Ross, P., Meyer, M., Burke, E., Ross, P., et al.: Timetabling in Constraint Logic Programming. Practice 1, 22–45 (1994)

    Google Scholar 

  3. Baptiste, P., Le Pape, C.: A theoretical and experimental comparison of constraint propagation techniques for disjunctive scheduling. In: Proc. IJCAI, vol. 1, pp. 600–606 (1995)

    Google Scholar 

  4. Cambazard, H., Demazeau, F., Jussien, N., David, P.: Interactively solving school timetabling problems using extensions of constraint programming. PATAT, 107–124 (2004)

    Google Scholar 

  5. Carlier, J., Pinson, E.: A practical use of Jacksons preemptive schedule for solving the job-shop problem. Annals of Operations Research 26(269-287), 47 (1990)

    MathSciNet  MATH  Google Scholar 

  6. Christiansen, H., Dahl, V.: HYPROLOG: A New Logic Programming Language with Assumptions and Abduction. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 159–173. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Dahl, V., Sambuc, R.: Un systeme de banque de donnees en logique du premier ordre, en vue de sa consultation en langue naturelle. Rapport de DEA, universite d’aix-marseille ii. pp. 1–29 (1976)

    Google Scholar 

  8. Dahl, V., Tarau, P., Li, R.: Assumption Grammars for Processing Natural Language. In: Proceedings of the Fourteenth International Conference on Logic Programming, pp. 256–270 (1997)

    Google Scholar 

  9. Di Gaspero, L., Schaerf, A.: Multi-neighbourhood local search with application to course timetabling. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 262–275. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Ding, L., Teh, H.H., Wang, P., Lui, H.C.: A prolog-like inference system based on neural logic – an attempt towards fuzzy neural logic programming. Fuzzy Sets and Systems 82(2), 235–251 (1996); Connectionist and Hybrid Connectionist Systems for Approximate Reasoning

    Article  MathSciNet  Google Scholar 

  11. Fruhwirth, T., et al.: Constraint handling rules. Constraint Programming: Basics and Trends 910, 90–107 (1995)

    Google Scholar 

  12. Gavanelli, M.: University Timetabling in ECLiPSe. Association for Logic Programming (ALP) News Letter 19(3) (2006)

    Google Scholar 

  13. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Imanaka, T., Soga, M., Uehara, K., Toyoda, J.: An Integration of Prolog and Neural Networks to Deal with Sensibility in Logic Programs.. In: ICSI, pp. 738–746 (1990)

    Google Scholar 

  15. Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic programming. Handbook of Logic in Artificial Intelligence and Logic Programming 5, 235–324 (1998)

    MathSciNet  Google Scholar 

  16. Kostuch, P.: The university course timetabling problem with a three-phase approach. LNCS, pp. 109–125.

    Google Scholar 

  17. Schaerf, A.: Combining local search and look-ahead for scheduling and constraint satisfaction problems. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pp. 1254–1259 (1997)

    Google Scholar 

  18. Shen, Z., Ding, L., Mukaidono, M.: A theoretical framework of fuzzy prolog machine. Fuzzy Computing: Theory, Hardware and Appl., 139–153 (1988)

    Google Scholar 

  19. Shen, Z., Ding, L., Mukaidono, M.: Fuzzy resolution principle. In: Proceedings of the Eighteenth International Symposium on Multiple-Valued Logic, pp. 210–215 (May 1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skvortsov, E., Kaviani, N., Dahl, V. (2011). Chemical Signaling as a Useful Metaphor for Resource Management. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21501-8_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21501-8_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21500-1

  • Online ISBN: 978-3-642-21501-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics