Abstract
In this paper particular stages are analyzed present in the iris recognition process. First, we shortly describe available acquisition systems and databases of iris images, which can be used for tests. Next, we concentrate on features extraction and coding with the time analysis. Results of average time of loading the image, segmentation, normalization, features encoding, and also recognition accuracy for CASIA and IrisBath databases are presented.
This paper was prepared within the INDECT project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal.Mach. Intell. 15(11), 1148–1161 (1993)
Wildes, R.P.: Iris recognition: An emerging biometric technology. Proc. IEEE 85(9), 1348–1363 (1997)
Boles, W.W., Boashash, B.: A human identification technique using images of the iris and wavelet transform. IEEE Trans. Signal Process 46(4), 1185–1188 (1998)
Ma, L., Tan, T., Wang, Y., Zhang, D.: Personal identification based on iris texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1519–1533 (2003)
Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient iris recognition by characterizing key local variations. IEEE Trans. Image Process 13(6), 739–750 (2004)
Sanchez-Avila, C., Sanchez-Reillo, R.: Two different approaches for iris recognition using Gabor filters and multiscale zero-crossing representation. Pattern Recognit. 38(2), 231–240 (2005)
Vatsa, M., Singh, R., Noore, A.: Reducing the false rejection rate of iris recognition using textural and topological features. Int. J. Signal Process 2(1), 66–72 (2005)
Yu, L., Zhang, D., Wang, K., Yang, W.: Coarse iris classification using box-counting to estimate fractal dimensions. Pattern Recognit. 38(11), 1791–1798 (2005)
Monro, D.M., Rakshit, S., Zhang, D.: DCT-based iris recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 586–596 (2007)
Poursaberi, A., Araabi, B.N.: Iris recognition for partially occluded images: Methodology and sensitivity analysis. EURASIP J. Adv. Signal Process 2007(1) Article ID 36751, 20 (2007)
Biometric data interchange formats – Part 6: Iris image data, ISO/IEC 19794-6 (2005)
Oki IRISPASS®-M, http://www.oki.com/en/press/2005/z05049e-2.html
Panasonic Iris Reader BM-ET330, http://panasonic.co.jp/pss/bmet330/en/
Chinese Academy of Sciences’ Institute of Automation, “CASIA-IrisV3”, http://www.cbsr.ia.ac.cn/IrisDatabase.htm and Biometric Ideal Test website http://biometrics.idealtest.org/
Signal and Image Processing Group (SIPG), University of Bath Iris Image Database, http://www.bath.ac.uk/elec-eng/research/sipg/irisweb/
Proença, H., et al.: The UBIRIS.v2: A Database of Visible Wavelength Iris Images Captured On-The-Move and At-ADistance. IEEE Transactions on Pattern Analysis and Machine Intelligence, Digital Object Identifier 10.1016/j.imavis.2009.03.003 (2009)
Dobeš, M., Machala, L.: Iris Database, http://www.inf.upol.cz/iris/
Masek, L.: Recognition of Human Iris Patterns for Biometric Identification, M. Thesis, The University of Western Australia (2003)
Kaminski, T.: Implementacja i analiza skuteczności identyfikacji osób na podstawie tęczówki (Implementation and efficiency analysis of person identification using iris recognition), M.Sc. Thesis, Supervisor: Tomasz Marciniak, Poznan University of Technology (2007)
Kovesi, P.: Some of my MATLAB functions, http://www.csse.uwa.edu.au/~pk/
Poursaberi, A., Araabi, B.N.: A Half-Eye Wavelet Based Method for Iris Recognition. In: Proceedings of the ISDA (2005)
Pereira, M.B., Paschoarelli Veiga, A.C.: A method for improving the reliability of an iris recognition system, Department of Electrical Engineering – Federal University of Uberlandia(UFU) – Brazil (2005)
Field, D.: Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America (1987)
Dąbrowski, A., et al.: D7.3 – Biometric features analysis component based on video and image information. INDECT Project FP7-218086 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marciniak, T., Dąbrowski, A., Chmielewska, A., Krzykowska, A. (2011). Analysis of Particular Iris Recognition Stages. In: Dziech, A., Czyżewski, A. (eds) Multimedia Communications, Services and Security. MCSS 2011. Communications in Computer and Information Science, vol 149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21512-4_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-21512-4_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21511-7
Online ISBN: 978-3-642-21512-4
eBook Packages: Computer ScienceComputer Science (R0)