Abstract
In this paper, a novel numerical integration method based on Particle Swarm Optimization (PSO) was presented. PSO is a technique based on the cooperation between particles. The exchange of information between these particles allows to resolve difficult problems. This approach is carefully handled and tested with some numerical examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wang, X.-h., et al.: Numerical Integration Study Based on Triangle Basis Neural Network Algorithm. Journal of Electronics and Information Technology 26(3), 394–399 (2004)
Eberhart, R.C., Kennedy, J.: A new optimizer using particles swarm theory. In: Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43 (1995)
Parsopoulos, K.E., Vrahatis, M.N.: Modification of the Particle Swarm Optimizer for Locating all the Global Minima. In: Kurkova, V., et al. (eds.) Artificial Neural Networks and Genetic Algorithms, pp. 324–327. Springer, New York (2001)
Parsopoulos, K.E., et al.: Stretching technique for obtaining global minimizers through particle swarm optimization. In: Proc. of the PSO Workshop, Indianapolis, USA, pp. 22–29 (2001)
Parsopoulos, K.E., et al.: Objective function stretching to alleviate convergence to local minima. Nonlinear Analysis TMA 47, 3419–3424 (2001)
Fourie, P.C., Groenwold, A.A.: Particle swarms in size and shape optimization. In: Proceedings of the International Workshop on Multi-disciplinary Design Optimization, Pretoria, South Africa, August 7-10, pp. 97–106 (2000)
Fourie, P.C., Groenwold, A.A.: Particle swarms in topology optimization. In: Extended Abstracts of the Fourth World Congress of Structural and Multidisciplinary Optimization, Dalian, China, June 4-8, pp. 52–53 (2001)
Eberhart, R.C., et al.: Computational Intelligence PC Tools. Academic Press Professional, Boston (1996)
Kennedy, J.: The behaviour of particles. Evol. Progr. VII, 581–587 (1998)
Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)
Shi, Y.H., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: IEEE Int. Conf. on Evolutionary Computation, pp. 101–106 (2001)
Shi, Y.H., Eberhart, R.C.: A modified particle swarm optimizer. In: Proc. of the 1998 IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, May 4-9 (1998)
Shi, Y.H., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998)
Clerc, M.: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 IEEE Congress on Evolutionary Computation, Washington DC, pp. 1951–1957 (1999)
Eberhart, R.C., Shi, Y.: Parameter selection in particle swarm optimization. In: Porto, V.W. (ed.) (1998)
Cristian, T.I.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 85(6), 317–325 (2003)
Zerarka, A., Khelil, N.: A generalized integral quadratic method: improvement of the solution for one dimensional Volterra integral equation using particle swarm optimization. Int. J. Simulation and Process Modelling 2(1-2), 152–163 (2006)
Zerarka, A., Soukeur, A., Khelil, N.: The particle swarm optimization against the Runge’s phenomenon: Application to the generalized integral quadrature method. International Journal of Mathematical and Statistical Sciences 1(3), 171–176 (2009)
Khelil, N., et al.: Improvement of Gregory’s formula using Particle Swarm Optimization. In: The proceeding of International Conference on Computer and Applied Mathematics, vol. 58, pp. 940–942 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Djerou, L., Khelil, N., Batouche, M. (2011). Numerical Integration Method Based on Particle Swarm Optimization. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds) Advances in Swarm Intelligence. ICSI 2011. Lecture Notes in Computer Science, vol 6728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21515-5_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-21515-5_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21514-8
Online ISBN: 978-3-642-21515-5
eBook Packages: Computer ScienceComputer Science (R0)