Skip to main content

Human Group Optimizer with Local Search

  • Conference paper
Advances in Swarm Intelligence (ICSI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6728))

Included in the following conference series:

Abstract

Human Group Optimization (HGO) algorithm, derived from the previously proposed seeker optimization algorithm (SOA), is a novel swarm intelligence algorithm by simulating human behaviors, especially human searching/foraging behaviors. In this paper, a canonical HGO with local search (L-HGO) is proposed. Based on the benchmark functions provided by CEC2005, the proposed algorithm is compared with several versions of differential evolution (DE) algorithms, particle swarm optimization (PSO) algorithms and covariance matrix adaptation evolution strategy (CMA-ES). The simulation results show that the proposed HGO is competitive or, even, superior to the considered other algorithms for some employed functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kordon, A.K.: Swarm intelligence: The benefits of swarms. In: Applying Computational Intelligence: How to Create Value, pp. 145–174. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Timmis, J., Andrews, P., Hart, E.: On artificial immune systems and swarm intelligence. Swarm Intell. 4, 247–273 (2010)

    Article  Google Scholar 

  3. Krause, J., Ruxton, G.D., Krause, S.: Swarm intelligence in animals and humans. Trends in Ecology & Evolution 25, 28–34 (2010)

    Article  Google Scholar 

  4. Goldstone, R.L., Roberts, M.E., Gureckis, T.M.: Emergent processes in group behavior. Current Directions in Psychological Science 17, 10–15 (2008)

    Article  Google Scholar 

  5. Dai, C.H., Chen, W.R., Song, Y.H., et al.: Seeker optimization algorithm: A novel stochastic search algorithm for global numerical optimization. J. Syst. Eng. Electro. 21, 300–311 (2010)

    Article  Google Scholar 

  6. Cohen, J.D., McClure, S.M., Yu, A.J.: Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philos. Trans. R. Soc. Lond., Ser. B: Biol. Sci. 362, 933–942 (2007)

    Article  Google Scholar 

  7. Dai, C., Zhu, Y., Chen, W.: Seeker optimization algorithm. In: Wang, Y., Cheung, Y., Liu, H. (eds.) CIS 2006. LNCS (LNAI), vol. 4456, pp. 167–176. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Dai, C., Chen, W., Cheng, Z., et al.: Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC). Int. J. Electr. Power Energ. Syst. 33, 369–376 (2011)

    Article  Google Scholar 

  9. Dai, C., Chen, W., Zhu, Y., et al.: Reactive power dispatch considering voltage stability with seeker optimization algorithm. Electr. Power Syst. Res. 79, 1462–1471 (2009)

    Article  Google Scholar 

  10. Dai, C., Chen, W., Zhu, Y., et al.: Seeker optimization algorithm for optimal reactive power dispatch. IEEE Trans. Power Syst. 24, 1218–1231 (2009)

    Google Scholar 

  11. Sivasubramani, S., Swarup, K.S.: Hybrid SOA–SQP algorithm for dynamic economic dispatch with valve-point effects. Energy 35(12), 5031–5036 (2010)

    Article  Google Scholar 

  12. Shaw, B., Mukherjee, V., Ghoshal, S.P.: Seeker optimization algorithm: application to the solution of economic load dispatch problems. IET Gener. Transm. Distrib. 5, 81–91 (2011)

    Article  Google Scholar 

  13. Krishnanand, K.R., Rout, P.K., Panigrahi, B.K., Mohapatra, A.: Solution to non-convex electric power dispatch problem using seeker optimization algorithm. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S. (eds.) SEMCCO 2010. LNCS, vol. 6466, pp. 537–544. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Zhao, Z., Li, Y., Yu, J., et al.: Optimal assembly tolerance design based on Fuzzy information entropy and seeker optimization algorithm. In: 3rd International Conference on Advanced Computer Theory and Engineering, vol. 5, pp. 610–613 (2010)

    Google Scholar 

  15. Dai, C., Chen, W., Zhu, Y.: Seeker optimization algorithm for digital IIR filter design. IEEE Trans. Ind. Electron. 57, 1710–1718 (2010)

    Google Scholar 

  16. Dai, C., Chen, W., Zhu, Y., et al.: Seeker optimization algorithm for tuning the structure and parameters of neural networks. Neurocomputing 74, 876–883 (2011)

    Article  Google Scholar 

  17. Dai, C., Chen, W., Ma, L., et al.: Human group optimizer for global numerical optimization. Int. J. Artif. Intell. Tools (2010) (in press)

    Google Scholar 

  18. Clerc, M.: Back to random topology (2007), http://clerc.maurice.free.fr/pso/

  19. Standard PSO 2007 (SPSO-07) on the Particle Swarm Central, Programs section, http://www.particleswarm.info/ (Login time in 2008)

  20. Liang, J.J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer with local search. In: Proc. 2005 IEEE Congress on Evol. Comput., vol. 2, pp. 522–528 (2005)

    Google Scholar 

  21. Suganthan, P.N., Hansen, N., Liang, J.J., et al.: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization, Technical Report, Nanyang Technological University, Singapore (May 2005)

    Google Scholar 

  22. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: Proc. 2005 IEEE Congress on Evol. Comput (CEC 2005), Edinburgh, Scotland, vol. 2, pp. 1785–1791 (2005)

    Google Scholar 

  23. Brest, J., Greiner, S., BoÅ¡ković, B., et al.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006)

    Article  Google Scholar 

  24. Auger, A., Kern, S., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: Proc. 2005 IEEE Congress on Evol. Comput (CEC 2005), Edinburgh, Scotland, vol. 2, pp. 1769–1776 (2005)

    Google Scholar 

  25. Liang, J.J., Qin, A.K., Suganthan, P.N., et al.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10, 67–82 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dai, C., Chen, W., Ran, L., Zhang, Y., Du, Y. (2011). Human Group Optimizer with Local Search. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds) Advances in Swarm Intelligence. ICSI 2011. Lecture Notes in Computer Science, vol 6728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21515-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21515-5_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21514-8

  • Online ISBN: 978-3-642-21515-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics