Abstract
Human Group Optimization (HGO) algorithm, derived from the previously proposed seeker optimization algorithm (SOA), is a novel swarm intelligence algorithm by simulating human behaviors, especially human searching/foraging behaviors. In this paper, a canonical HGO with local search (L-HGO) is proposed. Based on the benchmark functions provided by CEC2005, the proposed algorithm is compared with several versions of differential evolution (DE) algorithms, particle swarm optimization (PSO) algorithms and covariance matrix adaptation evolution strategy (CMA-ES). The simulation results show that the proposed HGO is competitive or, even, superior to the considered other algorithms for some employed functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kordon, A.K.: Swarm intelligence: The benefits of swarms. In: Applying Computational Intelligence: How to Create Value, pp. 145–174. Springer, Heidelberg (2010)
Timmis, J., Andrews, P., Hart, E.: On artificial immune systems and swarm intelligence. Swarm Intell. 4, 247–273 (2010)
Krause, J., Ruxton, G.D., Krause, S.: Swarm intelligence in animals and humans. Trends in Ecology & Evolution 25, 28–34 (2010)
Goldstone, R.L., Roberts, M.E., Gureckis, T.M.: Emergent processes in group behavior. Current Directions in Psychological Science 17, 10–15 (2008)
Dai, C.H., Chen, W.R., Song, Y.H., et al.: Seeker optimization algorithm: A novel stochastic search algorithm for global numerical optimization. J. Syst. Eng. Electro. 21, 300–311 (2010)
Cohen, J.D., McClure, S.M., Yu, A.J.: Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philos. Trans. R. Soc. Lond., Ser. B: Biol. Sci. 362, 933–942 (2007)
Dai, C., Zhu, Y., Chen, W.: Seeker optimization algorithm. In: Wang, Y., Cheung, Y., Liu, H. (eds.) CIS 2006. LNCS (LNAI), vol. 4456, pp. 167–176. Springer, Heidelberg (2007)
Dai, C., Chen, W., Cheng, Z., et al.: Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC). Int. J. Electr. Power Energ. Syst. 33, 369–376 (2011)
Dai, C., Chen, W., Zhu, Y., et al.: Reactive power dispatch considering voltage stability with seeker optimization algorithm. Electr. Power Syst. Res. 79, 1462–1471 (2009)
Dai, C., Chen, W., Zhu, Y., et al.: Seeker optimization algorithm for optimal reactive power dispatch. IEEE Trans. Power Syst. 24, 1218–1231 (2009)
Sivasubramani, S., Swarup, K.S.: Hybrid SOA–SQP algorithm for dynamic economic dispatch with valve-point effects. Energy 35(12), 5031–5036 (2010)
Shaw, B., Mukherjee, V., Ghoshal, S.P.: Seeker optimization algorithm: application to the solution of economic load dispatch problems. IET Gener. Transm. Distrib. 5, 81–91 (2011)
Krishnanand, K.R., Rout, P.K., Panigrahi, B.K., Mohapatra, A.: Solution to non-convex electric power dispatch problem using seeker optimization algorithm. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S. (eds.) SEMCCO 2010. LNCS, vol. 6466, pp. 537–544. Springer, Heidelberg (2010)
Zhao, Z., Li, Y., Yu, J., et al.: Optimal assembly tolerance design based on Fuzzy information entropy and seeker optimization algorithm. In: 3rd International Conference on Advanced Computer Theory and Engineering, vol. 5, pp. 610–613 (2010)
Dai, C., Chen, W., Zhu, Y.: Seeker optimization algorithm for digital IIR filter design. IEEE Trans. Ind. Electron. 57, 1710–1718 (2010)
Dai, C., Chen, W., Zhu, Y., et al.: Seeker optimization algorithm for tuning the structure and parameters of neural networks. Neurocomputing 74, 876–883 (2011)
Dai, C., Chen, W., Ma, L., et al.: Human group optimizer for global numerical optimization. Int. J. Artif. Intell. Tools (2010) (in press)
Clerc, M.: Back to random topology (2007), http://clerc.maurice.free.fr/pso/
Standard PSO 2007 (SPSO-07) on the Particle Swarm Central, Programs section, http://www.particleswarm.info/ (Login time in 2008)
Liang, J.J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer with local search. In: Proc. 2005 IEEE Congress on Evol. Comput., vol. 2, pp. 522–528 (2005)
Suganthan, P.N., Hansen, N., Liang, J.J., et al.: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization, Technical Report, Nanyang Technological University, Singapore (May 2005)
Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: Proc. 2005 IEEE Congress on Evol. Comput (CEC 2005), Edinburgh, Scotland, vol. 2, pp. 1785–1791 (2005)
Brest, J., Greiner, S., Bošković, B., et al.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006)
Auger, A., Kern, S., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: Proc. 2005 IEEE Congress on Evol. Comput (CEC 2005), Edinburgh, Scotland, vol. 2, pp. 1769–1776 (2005)
Liang, J.J., Qin, A.K., Suganthan, P.N., et al.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10, 67–82 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dai, C., Chen, W., Ran, L., Zhang, Y., Du, Y. (2011). Human Group Optimizer with Local Search. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds) Advances in Swarm Intelligence. ICSI 2011. Lecture Notes in Computer Science, vol 6728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21515-5_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-21515-5_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21514-8
Online ISBN: 978-3-642-21515-5
eBook Packages: Computer ScienceComputer Science (R0)