Skip to main content

On the CCA1-Security of Elgamal and Damgård’s Elgamal

  • Conference paper
Information Security and Cryptology (Inscrypt 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6584))

Included in the following conference series:

  • 924 Accesses

Abstract

It is known that there exists a reduction from the CCA1-security of Damgård’s Elgamal (DEG) cryptosystem to what we call the \(\textrm{ddh}^{\textrm{dsdh}}\) assumption. We show that \(\textrm{ddh}^{\textrm{dsdh}}\) is unnecessary for DEG-CCA1, while DDH is insufficient for DEG-CCA1. We also show that CCA1-security of the Elgamal cryptosystem is equivalent to another assumption \(\textrm{ddh}^{\textrm{csdh}}\), while we show that \(\textrm{ddh}^{\textrm{dsdh}}\) is insufficient for Elgamal’s CCA1-security. Finally, we prove a generic-group model lower bound \(\Omega (\sqrt[3]{q})\) for the hardest considered assumption \(\textrm{ddh}^{\textrm{csdh}}\), where q is the largest prime factor of the group order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bresson, E., Monnerat, J., Vergnaud, D.: Separation Results on the “One-More” Computational Problems. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 71–87. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Brown, D., Gallant, R.: The Static Diffie-Hellman Problem. Tech. Rep. 2004/306, International Association for Cryptologic Research (2004), http://eprint.iacr.org/2004/306 , http://eprint.iacr.org/2004/306

  3. Brown, D.R.L.: Irreducibility to the One-More Evaluation Problems: More May Be Less. Tech. Rep. 2008/435, International Association for Cryptologic Research (2007), http://eprint.iacr.org/2007/435

  4. Damgård, I.: Towards Practical Public Key Systems Secure against Chosen Ciphertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)

    Google Scholar 

  5. Desmedt, Y., Lipmaa, H., Phan, D.H.: Hybrid Damgård Is CCA1-Secure under the DDH Assumption. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 18–30. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Desmedt, Y., Phan, D.H.: A CCA Secure Hybrid Damgård’s ElGamal Encryption. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 68–82. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Elgamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gjøsteen, K.: A New Security Proof for Damgård’s ElGamal. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 150–158. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A New Randomness Extraction Paradigm for Hybrid Encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 590–609. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Maurer, U.M.: Abstract Models of Computation in Cryptography. In: Smart, N.P. (ed.) WCC 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005)

    Google Scholar 

  11. Naor, M.: On Cryptographic Assumptions and Challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  14. Tsiounis, Y., Yung, M.: On the Security of ElGamal Based Encryption. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117–134. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Wu, J., Stinson, D.R.: On the Security of the ElGamal Encryption Scheme and Damgård’s Variant. Tech. Rep. 2008/200, International Association for Cryptologic Research (2008), http://eprint.iacr.org/2008/200

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lipmaa, H. (2011). On the CCA1-Security of Elgamal and Damgård’s Elgamal. In: Lai, X., Yung, M., Lin, D. (eds) Information Security and Cryptology. Inscrypt 2010. Lecture Notes in Computer Science, vol 6584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21518-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21518-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21517-9

  • Online ISBN: 978-3-642-21518-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics