Abstract
This paper proposes a PSO-based hybrid multi-objective algorithm (HMOPSO) with the following three main features. First, the HMOPSO takes the crossover operator of the genetic algorithm as the particle updating strategy. Second, a propagating mechanism is adopted to propagate the non-dominated archive. Third, a local search heuristic based on scatter search is applied to improve the non-dominated solutions. Computational study shows that the HMOPSO is competitive with previous multi-objective algorithms in literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others

References
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation 8, 149–172 (2000)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm. Computer Engineering Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, Technical Report, 103 (2001)
Nebro, A.J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J.J., Beham, A.: AbYSS - Adapting scatter search to multiobjective optimization. IEEE Transactions on Evolutionary Computation 12(4), 439–457 (2008)
Hu, X., Eberhart, R.C.: Multiobjective optimization dynamic neighborhood particle swarm optimization. In: Proceedings of Congress on Evolutionary Computation, pp. 1677–1681 (2002)
Mostaghim, S., Teich, J.: Strategies for finding local guides in multi-objective particle swarm optimization (MOPSO). In: Proceedings of IEEE Swarm Intelligence Symposium, pp. 26–33 (2003)
Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation 8(3), 256–279 (2004)
Chow, C.K., Tsui, H.T.: Autonomous agent response learning by a multi-species particle swarm optimization. In: Proceedings of Congress on Evolutionary Computation, pp. 778–785 (2004)
Yen, G.G., Leong, W.F.: Dynamic multiple swarms in multiobjective particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics – Part A 39(4), 890–911 (2009)
Goh, C.K., Tan, K.C., Liu, D.S., Chiam, S.C.: A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design. European Journal of Operational Research 202(1), 42–54 (2010)
Li, X.D.: A non-dominated sorting particle swarm optimizer for multiobjective optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 37–48. Springer, Heidelberg (2003)
Srinivasan, D., Seow, T.H.: Particle swarm inspired evolutionary algorithm (PS-EA) for multiobjective optimization problem. In: Proceedings of Congress on Evolutionary Computation, pp. 2292–2297 (2003)
Tripathi, P.K., Bandyopadhyay, S., Pal, S.K.: Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients. Information Science 177(22), 5033–5049 (2007)
MartÃ, R., Laguna, M., Glover, F.: Principles of scatter search. European Journal of Operational Research 169(2), 359–372 (2006)
Raquel, C.R., Naval Jr., P.C.: An effective use of crowding distance in multiobjective particle swarm optimization. In: Proceedings of Conference on Genetic Evolutionary Computation, pp. 257–264 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, X., Tang, L. (2011). A PSO-Based Hybrid Multi-Objective Algorithm for Multi-Objective Optimization Problems. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds) Advances in Swarm Intelligence. ICSI 2011. Lecture Notes in Computer Science, vol 6729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21524-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-21524-7_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21523-0
Online ISBN: 978-3-642-21524-7
eBook Packages: Computer ScienceComputer Science (R0)