Skip to main content

A PSO-Based Hybrid Multi-Objective Algorithm for Multi-Objective Optimization Problems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6729))

Abstract

This paper proposes a PSO-based hybrid multi-objective algorithm (HMOPSO) with the following three main features. First, the HMOPSO takes the crossover operator of the genetic algorithm as the particle updating strategy. Second, a propagating mechanism is adopted to propagate the non-dominated archive. Third, a local search heuristic based on scatter search is applied to improve the non-dominated solutions. Computational study shows that the HMOPSO is competitive with previous multi-objective algorithms in literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  2. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation 8, 149–172 (2000)

    Article  Google Scholar 

  3. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm. Computer Engineering Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, Technical Report, 103 (2001)

    Google Scholar 

  4. Nebro, A.J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J.J., Beham, A.: AbYSS - Adapting scatter search to multiobjective optimization. IEEE Transactions on Evolutionary Computation 12(4), 439–457 (2008)

    Article  Google Scholar 

  5. Hu, X., Eberhart, R.C.: Multiobjective optimization dynamic neighborhood particle swarm optimization. In: Proceedings of Congress on Evolutionary Computation, pp. 1677–1681 (2002)

    Google Scholar 

  6. Mostaghim, S., Teich, J.: Strategies for finding local guides in multi-objective particle swarm optimization (MOPSO). In: Proceedings of IEEE Swarm Intelligence Symposium, pp. 26–33 (2003)

    Google Scholar 

  7. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation 8(3), 256–279 (2004)

    Article  Google Scholar 

  8. Chow, C.K., Tsui, H.T.: Autonomous agent response learning by a multi-species particle swarm optimization. In: Proceedings of Congress on Evolutionary Computation, pp. 778–785 (2004)

    Google Scholar 

  9. Yen, G.G., Leong, W.F.: Dynamic multiple swarms in multiobjective particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics – Part A 39(4), 890–911 (2009)

    Article  Google Scholar 

  10. Goh, C.K., Tan, K.C., Liu, D.S., Chiam, S.C.: A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design. European Journal of Operational Research 202(1), 42–54 (2010)

    Article  MATH  Google Scholar 

  11. Li, X.D.: A non-dominated sorting particle swarm optimizer for multiobjective optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 37–48. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Srinivasan, D., Seow, T.H.: Particle swarm inspired evolutionary algorithm (PS-EA) for multiobjective optimization problem. In: Proceedings of Congress on Evolutionary Computation, pp. 2292–2297 (2003)

    Google Scholar 

  13. Tripathi, P.K., Bandyopadhyay, S., Pal, S.K.: Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients. Information Science 177(22), 5033–5049 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Martí, R., Laguna, M., Glover, F.: Principles of scatter search. European Journal of Operational Research 169(2), 359–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Raquel, C.R., Naval Jr., P.C.: An effective use of crowding distance in multiobjective particle swarm optimization. In: Proceedings of Conference on Genetic Evolutionary Computation, pp. 257–264 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, X., Tang, L. (2011). A PSO-Based Hybrid Multi-Objective Algorithm for Multi-Objective Optimization Problems. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds) Advances in Swarm Intelligence. ICSI 2011. Lecture Notes in Computer Science, vol 6729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21524-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21524-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21523-0

  • Online ISBN: 978-3-642-21524-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics