Skip to main content

Density as the Segregation Mechanism in Fish School Search for Multimodal Optimization Problems

  • Conference paper
Advances in Swarm Intelligence (ICSI 2011)

Abstract

Methods to deal with Multimodal Optimization Problems (MMOP) can be classified in three main approaches, regarding the number and the type of desired solutions. In general, methods can be applied to find: (1) only one global solution; (2) all global solutions; and (3) all local solutions of a given MMOP. The simultaneous capture of several solutions of MMOPs without parameter adjustment is still an open question in optimization problems. In this article, we discuss a density segregation mechanism for Fish School Search to enable simultaneous capture of multiple optimal solutions of MMOPs with one single parameter. The new proposal is based on vanilla version of Fish School Search (FSS) algorithm, which is inspired on actual fish school behavior. The performance of the new algorithm is evaluated and compared to the performance of other methods such as NichePSO and Glowworm Swarm Optimization (GSO) for seven well-known benchmark functions of two dimensions. According to the obtained results, presented in this article, the new approach outperforms the algorithms NichePSO and GSO for all benchmark functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Koper, K., Wysession, M., Wiens, D.: Multimodal function optimization with a niching genetic algorithm: A seismological example. Bulletin of the Seismological Society of America 89(4), 978–988 (1999)

    Google Scholar 

  2. Dilettoso, E., Salerno, N.: A self-adaptive niching genetic algorithm for multimodal optimization of electromagnetic devices. IEEE Transactions on Magnetics 42(4), 1203–1206 (2006)

    Article  Google Scholar 

  3. El Imrani, A., Zine El Abidine, H., Limouri, M., Essaid, A.: Multimodal optimization of thermal histories. Comptes Rendus de l’Academie de Sciences - Serie IIa: Sciences de la Terre et des Planetes 329(8), 573–577 (1999)

    Google Scholar 

  4. Luh, G.-C., Chueh, C.-H.: Job shop scheduling optimization using multi-modal immune algorithm. In: Okuno, H.G., Ali, M. (eds.) IEA/AIE 2007. LNCS (LNAI), vol. 4570, pp. 1127–1137. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Naraharisetti, P., Karimi, I., Srinivasan, R.: Supply chain redesigns - multimodal optimization using a hybrid evolutionary algorithm. Industrial and Engineering Chemistry Research 48(24), 11094–11107 (2009)

    Article  Google Scholar 

  6. Krishnanand, K., Ghose, D.: Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intelligence 3(2), 87–124 (2009)

    Article  Google Scholar 

  7. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. Micro Machine and Human Science, 39–43 (1995)

    Google Scholar 

  8. Shi, Y., Eberhart, R.C.: An empirical study of particle swarm optimization. In: IEEE Congress on Evolutionary Computation, pp. 1945–1960 (1999)

    Google Scholar 

  9. Parsopoulos, K., Vrahatis, M.N.: Modification of the particle swarm optimizer for locating all the global minima. In: Karny (ed.) Artificial Neural Networks and Genetic Algorithms, pp. 324–327 (2001)

    Google Scholar 

  10. Brits, R., Engelbrecht, A.P., van den Bergh, F.: A niching particle swarm optimizer. In: Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning, pp. 692–696 (2002)

    Google Scholar 

  11. Parsopoulos, K., Vrahatis, M.N.: On the computation of all global minimizers through particle swarm optimization. IEEE Transactions on Evolutionary Computation 8(3), 211–224 (2004)

    Article  Google Scholar 

  12. Brits, R., Engelbrecht, A., van den Bergh, F.: Locating multiple optima using particle swarm optimization. Applied Mathematics and Computation 189(2), 1859–1883 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ozcan, E., Yilmaz, M.: Particle swarms for multimodal optimization. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 366–375. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Engelbrecht, A., Van Loggerenberg, L.: Enhancing the nichepso. In: IEEE Congress on Evolutionary Computation, CEC, pp. 2297–2302 (2007)

    Google Scholar 

  15. Bastos-Filho, C., de Lima Neto, F., Lins, A., Nascimento, A., Lima, M.: Fish school search. In: Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation. SCI, vol. 193, pp. 261–277. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Martinetz, T.M., Schulten, K.J.: Topology representing networks. Neural Networks 7(3), 507–522 (1994)

    Article  Google Scholar 

  17. Griewank, A.: Generalized descent for global optimization. Journal of Optimization Theory and Applications 34, 11–39 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Thiemard, E.: Economic generation of low-discrepancy sequences with a b-ary gray code. Technical report, Departement de Mathematiques, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Madeiro, S.S., de Lima-Neto, F.B., Bastos-Filho, C.J.A., do Nascimento Figueiredo, E.M. (2011). Density as the Segregation Mechanism in Fish School Search for Multimodal Optimization Problems. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds) Advances in Swarm Intelligence. ICSI 2011. Lecture Notes in Computer Science, vol 6729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21524-7_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21524-7_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21523-0

  • Online ISBN: 978-3-642-21524-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics