Skip to main content

Stabilized Branch-and-Price for the Rooted Delay-Constrained Steiner Tree Problem

  • Conference paper
Network Optimization (INOC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 6701))

Included in the following conference series:

Abstract

We consider the rooted delay-constrained Steiner tree problem which arises, e.g., in the design of centralized multicasting networks where quality of service constraints are of concern. We present a mixed integer linear programming formulation based on the concept of feasible paths which has already been considered in the literature for the spanning tree variant. Solving its linear relaxation by column generation has, however, been regarded as computationally not competitive. In this work, we study various possibilities to speed-up the solution of our model by stabilization techniques and embed the column generation procedure in a branch-and-price approach in order to compute proven optimal solutions. Computational results show that the best among the resulting stabilized branch-and-price variants outperforms so-far proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achterberg, T.: SCIP: Solving constraint integer programs. Mathematical Programming Computation 1(1), 1–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amor, H.B., Desrosiers, J.: A proximal trust-region algorithm for column generation stabilization. Computers & Operations Research 33, 910–927 (2006)

    Article  MATH  Google Scholar 

  3. Amor, H.B., Desrosiers, J., Carvalho, J.M.V.: Dual-optimal inequalities for stabilized column generation. Operations Research 54(3), 454–463 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amor, H.B., Desrosiers, J., Frangioni, A.: On the choice of explicit stabilizing terms in column generation. Discrete Applied Mathematics 157, 1167–1184 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-price: Column generation for solving huge integer programs. Operations Research 46, 316–329 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Carvalho, J.M.V.: Using extra dual cuts to accelerate convergence in column generation. INFORMS Journal on Computing 17(2), 175–182 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.): Column Generation. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  8. du Merle, O., Villeneuve, D., Desrosiers, J., Hansen, P.: Stabilized column generation. Discrete Mathematics 194(1-3), 229–237 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dumitrescu, I., Boland, N.: Improved preprocessing, labeling and scaling algorithms for the weight-constrained shortest path problem. Networks 42(3), 135–153 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  11. Ghaboosi, N., Haghighat, A.T.: A path relinking approach for delay-constrained least-cost multicast routing problem. In: 19th IEEE International Conference on Tools with Artificial Intelligence, pp. 383–390 (2007)

    Google Scholar 

  12. Gouveia, L., Paias, A., Sharma, D.: Modeling and solving the rooted distance-constrained minimum spanning tree problem. Computers & Operations Research 35(2), 600–613 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gouveia, L., Simonetti, L., Uchoa, E.: Modeling hop-constrained and diameter-constrained minimum spanning tree problems as Steiner tree problems over layered graphs. Mathematical Programming, 1–26 (2010)

    Google Scholar 

  14. Kompella, V.P., Pasquale, J.C., Polyzos, G.C.: Multicasting for multimedia applications. In: Eleventh Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 1992, pp. 2078–2085. IEEE, Los Alamitos (1992)

    Google Scholar 

  15. Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta Informatica 15(2), 141–145 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leggieri, V., Haouari, M., Triki, C.: An exact algorithm for the Steiner tree problem with delays. Electronic Notes in Discrete Mathematics 36, 223–230 (2010)

    Article  MATH  Google Scholar 

  17. Leitner, M., Raidl, G.R.: Strong lower bounds for a survivable network design problem. In: Haouari, M., Mahjoub, A.R. (eds.) ISCO 2010. Electronic Notes in Discrete Mathematics, vol. 36, pp. 295–302. Elsevier, Amsterdam (2010)

    Google Scholar 

  18. Leitner, M., Raidl, G.R., Pferschy, U.: Accelerating column generation for a survivable network design problem. In: Scutellà, M.G., et al. (eds.) Proceedings of the International Network Optimization Conference 2009, Pisa, Italy (2009)

    Google Scholar 

  19. Leitner, M., Raidl, G.R., Pferschy, U.: Branch-and-price for a survivable network design problem. Tech. Rep. TR 186–1–10–02, Vienna University of Technology, Vienna, Austria (2010), submitted to Networks

    Google Scholar 

  20. Leitner, M., Ruthmair, M., Raidl, G.R.: Stabilized column generation for the rooted delay-constrained Steiner tree problem. In: VII ALIO/EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal (May 2011)

    Google Scholar 

  21. Manyem, P., Stallmann, M.: Some approximation results in multicasting. Tech. Rep. TR-96-03, North Carolina State University (1996)

    Google Scholar 

  22. Marsten, R.E., Hogan, W.W., Blankenship, J.W.: The BOXSTEP method for large-scale optimization. Operations Research 23(3), 389–405 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pessoa, A., Uchoa, E., de Aragão, M., Rodrigues, R.: Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems. Mathematical Programming Computation 2(3), 259–290 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Qu, R., Xu, Y., Kendall, G.: A variable neighborhood descent search algorithm for delay-constrained least-cost multicast routing. In: Stützle, T. (ed.) LION 3. LNCS, vol. 5851, pp. 15–29. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Rousseau, L.M., Gendreau, M., Feillet, D.: Interior point stabilization for column generation. Operations Research Letters 35(5), 660–668 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ruthmair, M., Raidl, G.R.: A kruskal-based heuristic for the rooted delay-constrained minimum spanning tree problem. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp. 713–720. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Ruthmair, M., Raidl, G.R.: Variable neighborhood search and ant colony optimization for the rooted delay-constrained minimum spanning tree problem. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 391–400. Springer, Heidelberg (2010)

    Google Scholar 

  28. Ruthmair, M., Raidl, G.R.: A layered graph model and an adaptive layers framework to solve delay-constrained minimum tree problems. In: Fifteenth Conference on Integer Programming and Combinatorial Optimization (IPCO XV) (2011) (to appear)

    Google Scholar 

  29. Skorin-Kapov, N., Kos, M.: The application of Steiner trees to delay constrained multicast routing: a tabu search approach. In: Proceedings of the 7th International Conference on Telecommunications, vol. 2, pp. 443–448 (2003)

    Google Scholar 

  30. Skorin-Kapov, N., Kos, M.: A GRASP heuristic for the delay-constrained multicast routing problem. Telecommunication Systems 32(1), 55–69 (2006)

    Article  Google Scholar 

  31. Vanderbeck, F.: Implementing mixed integer column generation. In: Desaulniers et al [7], pp. 331–358

    Google Scholar 

  32. Wentges, P.: Weighted Dantzig-Wolfe decomposition for linear mixed-integer programming. International Transactions in Operational Research 4(2), 151–162 (1997)

    MATH  Google Scholar 

  33. Xu, Y., Qu, R.: A GRASP approach for the delay-constrained multicast routing problem. In: Proceedings of the 4th Multidisplinary International Scheduling Conference (MISTA4), pp. 93–104 (2009)

    Google Scholar 

  34. Xu, Y., Qu, R.: A hybrid scatter search meta-heuristic for delay-constrained multicast routing problems. Applied Intelligence, 1–13 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leitner, M., Ruthmair, M., Raidl, G.R. (2011). Stabilized Branch-and-Price for the Rooted Delay-Constrained Steiner Tree Problem. In: Pahl, J., Reiners, T., Voß, S. (eds) Network Optimization. INOC 2011. Lecture Notes in Computer Science, vol 6701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21527-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21527-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21526-1

  • Online ISBN: 978-3-642-21527-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics