Skip to main content

Nonlinear Maneuvering Control of Rigid Formations of Fixed Wing UAVs

  • Conference paper
Autonomous and Intelligent Systems (AIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6752))

Included in the following conference series:

Abstract

This paper is on autonomous three-dimensional maneuvering of teams of fixed-wing unmanned aerial vehicles (UAVs), cooperating with each other during the mission flight. The goal is to design a distributed control scheme that preserves the shape of the UAV team formation by keeping the inter-agent distances constant during arbitrary maneuvers. The paper considers the dynamic characteristics and constraints of the UAVs resulting from being fixed-wing; and proposes a Lyapunov analysis based individual UAV control design to complement the distributed control scheme. After presentation of formal design of the distributed control scheme and individual UAV controllers, simulation results are provided demonstrating effectiveness of the proposed control design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, H., Arcak, M., Wen, J.: Rigid body attitude coordination without inertial frame information. Automatica 44(12), 3170–3175 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayezit, I., Amini, M., Fidan, B., Shames, I.: Cohesive Motion Control of Autonomous Formations in Three Dimensions. In: Proc. Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Brisbane, Australia (December 2010)

    Google Scholar 

  3. Bayezit, I., Fidan, B., Amini, M., Shames, I.: Distributed Cohesive Motion Control of Quadrotor Vehicle Formations. In: Proc. ASME 2010 International Mechanical Engineering Congress and Exposition, Vancouver, Canada (November 2010)

    Google Scholar 

  4. Bayraktar, S., Fainekos, G., Pappas, G.: Experimental cooperative control of fixed-wing unmanned aerial vehicles. In: 43rd IEEE Conference on Decision and Control, CDC 2004, vol. 4, pp. 4292–4298. IEEE, Los Alamitos (2005)

    Google Scholar 

  5. Drake, S., Brown, K., Fazackerley, J., Finn, A.: Autonomous control of multiple UAVs for the passive location of radars. In: Proc. 2nd International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 403–409 (2005)

    Google Scholar 

  6. Fidan, B., Anderson, B., Yu, C., Hendrickx, J.: Persistent autonomous formations and cohesive motion control. In: Ioannou, P.A., Pitsillides, A. (eds.) Modeling and Control of Complex Systems, pp. 247–275. CRC, Boca Raton (2007)

    Google Scholar 

  7. Gazi, V., Fidan, B.: Coordination and control of multi-agent dynamic systems: Models and approaches. In: Şahin, E., Spears, W., Winfield, A. (eds.) Swarm Robotics, pp. 71–102. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Olfati-Saber, R., Murray, R.: Distributed cooperative control of multiple vehicle formations using structural potential functions. In: Proc. of IFAC World Congress, pp. 346–352 (2002)

    Google Scholar 

  9. Paul, T., Krogstad, T., Gravdahl, J.: Modelling of UAV formation flight using 3D potential field. Simulation Modelling Practice and Theory 16(9), 1453–1462 (2008)

    Article  Google Scholar 

  10. Sandeep, S., Fidan, B., Yu, C.: Decentralized cohesive motion control of multi-agent formations. In: Proc. 14th Mediterranean Conference on Control and Automation (June 2006)

    Google Scholar 

  11. Smith, R.S., Hadaegh, F.Y.: Distributed estimation, communication and control for deep space formations. IET Control Theory & Applications 1(2), 445–451 (2007)

    Article  Google Scholar 

  12. Tanner, H.G., Pappas, G.J., Kumar, V.: Leader-to-formation stability. IEEE Transactions on Robotics and Automation 20(3), 443–455 (2004)

    Article  Google Scholar 

  13. Yu, C., Hendrickx, J.M., Fidan, B., Anderson, B.D.O., Blondel, V.D.: Three and higher dimensional autonomous formations: Rigidity, persistence and structural persistence. Automatica 43(3), 387–402 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhai, S., Fidan, B., Oztürk, S., Gazi, V.: Single view depth estimation based formation control of robotic swarms: Obstacle avoidance, simulation, and practical issues. In: Proc. 16th Mediterranean Conference on Control and Automation, June 2008, pp. 1162–1167 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bayezit, I., Fidan, B. (2011). Nonlinear Maneuvering Control of Rigid Formations of Fixed Wing UAVs. In: Kamel, M., Karray, F., Gueaieb, W., Khamis, A. (eds) Autonomous and Intelligent Systems. AIS 2011. Lecture Notes in Computer Science(), vol 6752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21538-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21538-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21537-7

  • Online ISBN: 978-3-642-21538-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics