Abstract
Topographic mapping offers a very flexible tool to inspect large quantities of high-dimensional data in an intuitive way. Often, electronic data are inherently non-Euclidean and modern data formats are connected to dedicated non-Euclidean dissimilarity measures for which classical topographic mapping cannot be used. We give an overview about extensions of topographic mapping to general dissimilarities by means of median or relational extensions. Further, we discuss efficient approximations to avoid the usually squared time complexity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alex, N., Hasenfuss, A., Hammer, B.: Patch clustering for massive data sets. Neurocomputing 72(7-9), 1455–1469 (2009)
Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2007)
Bishop, C.M., Williams, C.K.I.: GTM: The generative topographic mapping. Neural Computation 10, 215–234 (1998)
Boulet, R., Jouve, B., Rossi, F., Villa-Vialaneix, N.: Batch kernel SOM and related Laplacian methods for social network analysis. Neurocomputing 71(7-9), 1257–1273 (2008)
Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research 31, 365–370 (2003)
Bottou, L., Bengio, Y.: Convergence properties of the k-means algorithm. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) NIPS 1994, pp. 585–592. MIT, Cambridge (1995)
Cottrell, M., Fort, J.C., Pagès, G.: Theoretical aspects of the SOM algorithm. Neurocomputing 21, 119–138 (1999)
Cottrell, M., Hammer, B., Hasenfuss, A., Villmann, T.: Batch and median neural gas. Neural Networks 19, 762–771 (2006)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons, New York (2001)
Fort, J.-C., Letrémy, P., Cottrell, M.: Advantages and drawbacks of the Batch Kohonen algorithm. In: Verleysen, M. (ed.) ESANN 2002, D Facto, pp. 223–230 (2002)
Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., Bairoch, A.: ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788 (2003)
Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)
Gisbrecht, A., Mokbel, B., Hammer, B.: The Nystrom approximation for relational generative topographic mappings. In: NIPS Workshop on Challenges of Data Visualization (2010)
Gisbrecht, A., Mokbel, B., Hammer, B.: Relational generative topographic map. Neurocomputing 74, 1359–1371 (2011)
Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity datasets. Neural Computation 22(9), 2229–2284 (2010)
Hammer, B., Hasenfuss, A., Rossi, F.: Median topographic maps for biological data sets. In: Biehl, M., Hammer, B., Verleysen, M., Villmann, T. (eds.) Similarity-Based Clustering. LNCS, vol. 5400, pp. 92–117. Springer, Heidelberg (2009)
Hathaway, R.J., Bezdek, J.C.: Nerf c-means: Non-Euclidean relational fuzzy clustering. Pattern Recognition 27(3), 429–437 (1994)
Heskes, T.: Self-organizing maps, vector quantization, and mixture modeling. IEEE Transactions on Neural Networks 12, 1299–1305 (2001)
Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual analytics: Scope and challenges. In: Simoff, S., Boehlen, M.H., Mazeika, A. (eds.) Visual Data Mining: Theory, Techniques and Tools for Visual Analytics. LNCS, Springer, Heidelberg (2008)
Kohonen, T. (ed.): Self-Organizing Maps, 3rd edn. Springer, New York (2001)
Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Networks 15, 945–952 (2002)
Lundsteen, C., J-Phillip, Granum, E.: Quantitative analysis of 6985 digitized trypsin g-banded human metaphase chromosomes. Clinical Genetics 18, 355–370 (1980)
Martinetz, T., Berkovich, S., Schulten, K.: Neural-gas Network for Vector Quantization and its Application to Time-Series Prediction. IEEE-Transactions on Neural Networks 4(4), 558–569 (1993)
Mevissen, H., Vingron, M.: Quantifying the local reliability of a sequence alignment. Protein Engineering 9, 127–132 (1996)
Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39(10), 1852–1863 (2006)
Ontrup, J., Ritter, H.: Hyperbolic self-organizing maps for semantic navigation. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 1417–1424. MIT Press, Cambridge (2001)
Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP hard. Journal of Global Optimization 1, 15–22 (1991)
Williams, C., Seeger, M.: Using the Nyström method to speed up kernel machines. In: Advances in Neural Information Processing Systems, vol. 13, pp. 682–688. MIT Press, Cambridge (2001)
Yin, H.: ViSOM - A novel method for multivariate data projection and structure visualisation. IEEE Trans. on Neural Networks 13(1), 237–243 (2002)
Yin, H.: On the equivalence between kernel self-organising maps and self-organising mixture density networks. Neural Networks 19(6-7), 780–784 (2006)
Zhu, X., Hammer, B.: Patch affinity propagation. In: European Symposium on Artificial Neural Networks (to appear, 2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hammer, B., Gisbrecht, A., Hasenfuss, A., Mokbel, B., Schleif, FM., Zhu, X. (2011). Topographic Mapping of Dissimilarity Data. In: Laaksonen, J., Honkela, T. (eds) Advances in Self-Organizing Maps. WSOM 2011. Lecture Notes in Computer Science, vol 6731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21566-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-21566-7_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21565-0
Online ISBN: 978-3-642-21566-7
eBook Packages: Computer ScienceComputer Science (R0)