Abstract
Aircraft engines are designed to be used during several tens of years. Ensuring a proper operation of engines over their lifetime is therefore an important and difficult task. The maintenance can be improved if efficient procedures for the understanding of data flows produced by sensors for monitoring purposes are implemented. This paper details such a procedure aiming at visualizing in a meaningful way successive data measured on aircraft engines and finding for every possible request sequence of data measurement similar behaviour already observed in the past which may help to anticipate failures. The core of the procedure is based on Self-Organizing Maps (SOM) which are used to visualize the evolution of the data measured on the engines. Rough measurements can not be directly used as inputs, because they are influenced by external conditions. A preprocessing procedure is set up to extract meaningful information and remove uninteresting variations due to change of environmental conditions. The proposed procedure contains four main modules to tackle these difficulties: environmental conditions normalization (ECN), change detection and adaptive signal modeling (CD), visualization with Self-Organizing Maps (SOM) and finally minimal Edit Distance search (SEARCH). The architecture of the procedure and of its modules is described in this paper and results on real data are also supplied.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Basseville, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Application. Prentice-Hall, Englewood Cliffs (1993)
Côme, E., Cottrell, M., Verleysen, M., Lacaille, J.: Aircraft engine health monitoring using self-organizing maps. In: Springer (ed.) Proceedings of the Industrial Conference on Data-Mining (2010)
Cottrell, M., Gaubert, P., Eloy, C., François, D., Hallaux, G., Lacaille, J., Verleysen, M.: Fault prediction in aircraft engines using self-organizing maps. In: Príncipe, J.C., Miikkulainen, R. (eds.) WSOM 2009. LNCS, vol. 5629, pp. 37–44. Springer, Heidelberg (2009)
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.J.: Least angle regression. Annals of Statistics 32(2), 407–499 (2004)
Gustafsson, F.: Adaptive filtering and change detection. John Wiley & Sons, Chichester (2000)
Navarro, G.: A guided tour to approximate string matching. ACM Computing Surveys 33, 2001 (1999)
Ross, G., Tasoulis, D., Adams, N.: Online annotation and prediction for regime switching data streams. In: Proceedings of ACM Symposium on Applied Computing, pp. 1501–1505 (March 2009)
Svensson, M., Byttner, S., Rognvaldsson, T.: Self-organizing maps for automatic fault detection in a vehicle cooling system. In: 4th International IEEE Conference on Intelligent Systems, vol. 3, pp. 8–12 (2008)
Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Som toolbox for matlab 5. Tech. Rep. A57, Helsinki University of Technology (April 2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Côme, E., Cottrell, M., Verleysen, M., Lacaille, J. (2011). Aircraft Engine Fleet Monitoring Using Self-Organizing Maps and Edit Distance. In: Laaksonen, J., Honkela, T. (eds) Advances in Self-Organizing Maps. WSOM 2011. Lecture Notes in Computer Science, vol 6731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21566-7_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-21566-7_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21565-0
Online ISBN: 978-3-642-21566-7
eBook Packages: Computer ScienceComputer Science (R0)