Skip to main content

Self Organizing Maps as Models of Social Processes: The Case of Electoral Preferences

  • Conference paper
Advances in Self-Organizing Maps (WSOM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6731))

Included in the following conference series:

Abstract

We propose the use of self-organizing maps as models of social processes, in particular, of electoral preferences. In some voting districts patterns of electoral preferences emerge, such that in nearby areas citizens tend to vote for the same candidate whereas in geographically distant areas the most voted candidate is that whose political position is distant to the latter. Those patterns are similar to the spatial structure achieved by self-organizing maps. This model is able to achieve spatial order from disorder by forming a topographic map of the external field, identified with advertising from the media. Here individuals are represented in two spaces: a static geographical location, and a dynamic political position. The modification of the later leads to a pattern in which both spaces are correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kohonen, T.: Self-Organizing maps, 3rd edn. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  2. Barreto, G., Araujo, A.: Identification and control of dynamical using the self-organizing map. IEEE Transactions on Neural Networks 15(5), 1244–1259 (2004)

    Article  Google Scholar 

  3. Galam, S.: The dynamics of minority opinions in democratic debates. Physica A 336, 46–62 (2004), doi:10.1016/j.physa.2004.01.010

    MathSciNet  Google Scholar 

  4. Pabjan, B., Pekalski, A.: Model opinion forming and voting. Physica A 387, 6183–6189 (2008), doi:10.1016/j.physa.2008.07.003

    Article  Google Scholar 

  5. Costa, R., Almeida, M., Andrade, S., Moreira, M.: Scaling behavior in a proportional voting process. Phys. Rev. E. 60, 1067–1068 (1999)

    Article  Google Scholar 

  6. Tuncay, C.: Opinion Dynamics Driven by Leaders, Media, Viruses and Worms. Int. J. of Modern Physics C 18(5), 849–859 (2007)

    Article  MATH  Google Scholar 

  7. González-Avella, J., Cosenza, M., Tucci, K.: Nonequilibrium transition induced by mass media in a model for social influence. Phys. Rev. E 72 (2005)

    Google Scholar 

  8. Mazzitello, K., Candia, J., Dossetti, V.: Effects of Mass Media and Cultural Drift in a Model for Social Influence. Int. J. Mod. Phys. C 18, 1475 (2007)

    Article  MATH  Google Scholar 

  9. Villmann, T., Der, R., Herrmann, M., Martinetz, T.: Topology preservation in self-organizing feature maps. IEEE Tr. on NN. 8(2), 256–266 (1997)

    Article  Google Scholar 

  10. Flanagan, J.: Sufficiente conditions for self-organization in the SOM with a decreasing neighborhood function of any width. C. of Art. NN. Conf. pub. 470 (1999)

    Google Scholar 

  11. Erwin, E., Obermayer, K., Schulten, K.: Self-organizing maps: Ordering, convergence properties and energy functions. Biol. Cyb. 67, 47–55 (1992)

    Article  MATH  Google Scholar 

  12. Erwin, E., Obermayer, K., Schulten, K.: self-organizing maps: stationary states, metastability and convergence rate. Biol. Cyb. 67, 35–45 (1992b)

    Article  MATH  Google Scholar 

  13. Niemelä, P., Honkela, T.: Analysis of parliamentary election results and socio-economic situation using self-organizing map. In: Príncipe, J.C., Miikkulainen, R. (eds.) WSOM 2009. LNCS, vol. 5629, pp. 209–218. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Schelling, T.: Micromotives and Macrobehavior. W. W. Norton (1978)

    Google Scholar 

  15. Axelrod, R.: The dissemination of culture. J. of Confl. Res. 41, 203–226 (1997)

    Article  Google Scholar 

  16. Schulz, R., Reggia, J.: Temporally Asymmetric Learning Supports Sequence Processing in Multi-Winner Self-Organizing Maps. Neural Comp. 16(3), 535–561 (2004)

    Article  MATH  Google Scholar 

  17. Flanagan, J.: Self-organization in the one-dimensional SOM with a decreasing neighborhood. Neural Networks 14(10), 1405–1417 (2001)

    Article  Google Scholar 

  18. Celluci, C., Albano, A., Rap, P.: Statistical validation of mutual information calculations. Phys. Rev. E 71, 66208 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neme, A., Hernández, S., Neme, O. (2011). Self Organizing Maps as Models of Social Processes: The Case of Electoral Preferences. In: Laaksonen, J., Honkela, T. (eds) Advances in Self-Organizing Maps. WSOM 2011. Lecture Notes in Computer Science, vol 6731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21566-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21566-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21565-0

  • Online ISBN: 978-3-642-21566-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics