Abstract
We introduce a noise-tolerant segmentation algorithm efficient on 3D multiscale granular materials. The approach uses a graph-based version of the stochastic watershed and relies on the morphological granulometry of the image to achieve a content-driven unsupervised segmentation. We present results on both a virtual material and a real X-ray microtomographic image of solid propellant.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angulo, J., Jeulin, D.: Stochastic watershed segmentation. In: Proceedings of ISMM, 8th International Symposium on Mathematical Morphology, pp. 265–276 (2007) ISBN 978-85-17-00032-4
Beucher, S., Lantujoul, C.: Use of watersheds in contour detection. In: International Workshop on Image Processing, Real-Time Edge and Motion Detection (1979)
Beucher, S.: Watershed, hierarchical segmentation and waterfall algorithm. In: Proc. Mathematical Morphology and its Applications to Image Processing, Fontainebleau, pp. 69–76. Kluwer Ac. Publ., Nld. (1994)
Beucher, S., Marcotegui, B.: P algorithm, a dramatic enhancement of the waterfall transformation. CMM/Mines Paristech publication, 86 pages (September 2009)
Marcotegui, B., Beucher, S.: Fast implementation of waterfall based on graphs. In: Mathematical Morphology: 40 Years on: Proc. 7th ISMM, Paris, pp. 177–186. Springer, Heidelberg (2005)
Faessel, M., Jeulin, D.: Segmentation of 3D microtomographic images of granular materials with the stochastic watershed. Journal of Microscopy 239(1), 17–31 (2010)
Meyer, F., Stawiaski, J.: Tailored hierarchies for segmentation (submitted)
Jeulin, D.: Modèles morphologiques de structures aléatoires et de changement d’échelle. Thèse de Doctorat d’État, University of Caen, France (1991)
Jeulin, D.: Remarques sur la segmentation probabiliste, N-10/08/MM, Internal Report, Mines ParisTech. (September 2008)
Noyel, G., Angulo, J., Jeulin, D.: Random germs and stochastic watershed for unsupervised multispectral image segmentation. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part III. LNCS (LNAI), vol. 4694, pp. 17–24. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gillibert, L., Jeulin, D. (2011). Stochastic Multiscale Segmentation Constrained by Image Content. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds) Mathematical Morphology and Its Applications to Image and Signal Processing. ISMM 2011. Lecture Notes in Computer Science, vol 6671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21569-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-21569-8_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21568-1
Online ISBN: 978-3-642-21569-8
eBook Packages: Computer ScienceComputer Science (R0)