Abstract
We study hierarchical segmentations that are optimal in the sense of minimal spanning forests of the original image. We introduce a region-merging operation called uprooting, and we prove that optimal hierarchical segmentations are equivalent to the ones given by uprooting a watershed-cut based segmentation. Based on those theoretical results, we propose an efficient algorithm to compute such hierarchies, as well as the first saliency map algorithm compatible with the morphological filtering framework.
This work received funding from the Agence Nationale de la Recherche, contract ANR-2010-BLAN-0205-01.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allène, C., Audibert, J.-Y., Couprie, M., Keriven, R.: Some links between extremum spanning forests, watersheds and min-cuts. IVC 28(10), 1460–1471 (2010)
Arbeláez, P.A., Cohen, L.D.: A metric approach to vector-valued image segmentation. IJCV 69(1), 119–126 (2006)
Audigier, R., Lotufo, R.: Seed-relative segmentation robustness of watershed and fuzzy connectedness approaches. In: IEEE SIBGRAPI 2007, pp. 61–70 (2007)
Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Latin American Theoretical Informatics, pp. 88–94 (2000)
Beucher, S.: Watershed, hierarchical segmentation and waterfall algorithm. In: ISMM 1994, pp. 69–76 (1994)
Couprie, C., Grady, L., Najman, L., Talbot, H.: Power Watersheds: A Unifying Graph Based Optimization Framework. PAMI (to appear, 2011)
Couprie, M., Najman, L., Bertrand, G.: Quasi-linear algorithms for the topological watershed. JMIV 22(2-3), 231–249 (2005)
Cousty, J., Najman, L., Serra, J.: Raising in watershed lattices. In: 15th IEEE ICIP 2008, pp. 2196–2199 (2008)
Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed Cuts: Minimum Spanning Forests and the Drop of Water Principle. PAMI 31(8), 1362–1374 (2009)
Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: thinnings, shortest-path forests and topological watersheds. PAMI 32(5), 925–939 (2010)
Cousty, J., Najman, L., Bertrand, G., Couprie, M.: Weighted fusion graphs: merging properties and watersheds. DAM 156(15 ), 3011–3027 (2008)
Cousty, J., Najman, L., Serra, J.: Some morphological operators in graph spaces. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 149–160. Springer, Heidelberg (2009)
Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. International Journal of Computer Vision 59, 167–181 (2004)
Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34, 596–615 (1987)
Gower, J.C., Ross, G.J.S.: Minimum spanning tree and single linkage cluster analysis. Appl. Stats. 18, 54–64 (1969)
Guigues, L., Cocquerez, J.P., Men, H.L.: Scale-sets image analysis. IJCV 68(3), 289–317 (2006)
Jardine, N., Sibson, R.: Mathematical taxonomy. Wiley, Chichester (1971)
Marcotegui, B., Beucher, S.: Fast implementation of waterfall based on graphs. In: ISMM 2005, pp. 177–186 (2005)
Meyer, F.: Minimum spanning forests for morphological segmentation. In: ISMM 1994, pp. 77–84 (1994)
Meyer, F.: The dynamics of minima and contours. In: ISMM, pp. 329–336 (1996)
Meyer, F., Najman, L.: Segmentation, minimum spanning tree and hierarchies. In: Mathematical Morphology, ch. 9, pp. 229–261. ISTE-Wiley (2010)
Morris, O.J., Lee, M.d.J., Constantinides, A.G.: Graph theory for image analysis: an approach based on the shortest spanning tree. IEE Proc. on Communications, Radar and Signal 133(2), 146–152 (1986)
Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. PAMI 18(12), 1163–1173 (1996)
Najman, L.: On the equivalence between hierarchical segmentations and ultrametric watersheds. JMIV 40(3), 231–247 (2011)
Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE TIP 15(11), 3531–3539 (2006)
Najman, L., Couprie, M., Bertrand, G.: Watersheds, mosaics and the emergence paradigm. DAM 147(2-3), 301–324 (2005)
Philipp-Foliguet, S., Jordan, M., Najman, L., Cousty, J.: Artwork 3D Model Database Indexing and Classification. Patt. Recogn. 44(3), 588–597 (2011)
Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE TIP 7(4), 555–570 (1998)
Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22, 215–225 (1975)
Vachier, C., Meyer, F.: Extinction value: a new measurement of persistence. In: IEEE Workshop on Nonlinear Signal and Image Processing, pp. 254–257 (1995)
Zahn, C.T.: Graph-theoretical methods for detecting and descibing gestalt clusters. IEEE Transactions on Computers C-20(1), 99–112 (1971)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cousty, J., Najman, L. (2011). Incremental Algorithm for Hierarchical Minimum Spanning Forests and Saliency of Watershed Cuts. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds) Mathematical Morphology and Its Applications to Image and Signal Processing. ISMM 2011. Lecture Notes in Computer Science, vol 6671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21569-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-21569-8_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21568-1
Online ISBN: 978-3-642-21569-8
eBook Packages: Computer ScienceComputer Science (R0)